亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Controlled-Potential Simulation of Elementary Electrochemical Reactions: Proton Discharge on Metal Surfaces

凝胶 电化学 化学 质子 电子 电子结构 化学物理 标准电极电位 金属 密度泛函理论 电化学电位 基本电荷 原子物理学 电极 材料科学 计算化学 物理化学 物理 量子力学 有机化学
作者
Georg Kastlunger,Per Lindgren,Andrew A. Peterson
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:122 (24): 12771-12781 被引量:211
标识
DOI:10.1021/acs.jpcc.8b02465
摘要

The simulation of electrochemical reaction dynamics from first principles remains challenging, since over the course of an elementary step, an electron is either consumed or produced by the electrode. For example, the hydrogen evolution reaction begins with a simple proton discharge to a metal surface, but with conventional electronic structure methods, the simulated potential, which is manifested as the metal's workfunction, varies over the course of the simulation as the electron is consumed in the new metal–hydrogen bond. Here, we present a simple approach to allow the direct control of the electrochemical potential via charging of the electrode surface. This is achieved by changing the total number of electrons in the self-consistent cycle, while enforcing charge neutrality through the introduction of a jellium counter charge dispersed in an implicit solvent region above the slab. We observe that the excess electrons localize selectively at the metal's reactive surface and that the metal workfunction responds nearly linearly to the variation in electronic count. This linear response allows for control of the potential in simulations with a minimal computational penalty compared to standard electronic structure calculations. This scheme can be straightforwardly implemented with common electronic structure calculators (density functional theory in the present work), and we find this method to be compatible with the commonly used computational hydrogen electrode model, which we expect will make it useful in the construction of potential-dependent free-energy diagrams in electrochemistry. We apply this approach to the proton-deposition (Volmer) step on both Au(111) and Pt(111) surfaces and show that we can reliably control the simulated electrode potential and thus assess the potential dependence of the initial, transition, and final states. Our method allows us to directly assess the location along the reaction pathway with the greatest amount of charge transfer, which we find to correspond well with the reaction barrier, indicating this reaction is a concerted proton–electron transfer. Interestingly, we show that the Pt electrode has not only a more favorable equilibrium energy with adsorbed hydrogen but also a lower intrinsic barrier under thermoneutral conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MchemG应助科研通管家采纳,获得10
3秒前
丘比特应助谦让的西装采纳,获得10
14秒前
20秒前
25秒前
29秒前
赘婿应助谦让的西装采纳,获得10
31秒前
满意的伊完成签到,获得积分10
34秒前
45秒前
wannna发布了新的文献求助10
51秒前
wannna完成签到,获得积分10
57秒前
1分钟前
1分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
2分钟前
John完成签到,获得积分10
3分钟前
MchemG应助John采纳,获得30
3分钟前
寒冷的如之完成签到 ,获得积分10
3分钟前
云朵完成签到 ,获得积分10
3分钟前
冬去春来完成签到 ,获得积分10
3分钟前
zz发布了新的文献求助10
3分钟前
沐熙发布了新的文献求助10
4分钟前
emchavezangel完成签到,获得积分10
4分钟前
SYLH应助emchavezangel采纳,获得10
4分钟前
香蕉觅云应助洒脱鲲采纳,获得10
4分钟前
Ocean完成签到,获得积分10
4分钟前
沐熙发布了新的文献求助10
5分钟前
高兴凝安完成签到 ,获得积分10
5分钟前
liuliu0801完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
沐熙完成签到,获得积分10
5分钟前
5分钟前
沐熙发布了新的文献求助10
5分钟前
5分钟前
北风完成签到,获得积分10
5分钟前
水的很厉害完成签到,获得积分10
5分钟前
月儿完成签到 ,获得积分10
6分钟前
阔达的非笑完成签到 ,获得积分10
6分钟前
小马甲应助Silence采纳,获得10
6分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
Molecular Representations for Machine Learning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833819
求助须知:如何正确求助?哪些是违规求助? 3376278
关于积分的说明 10492541
捐赠科研通 3095843
什么是DOI,文献DOI怎么找? 1704722
邀请新用户注册赠送积分活动 820084
科研通“疑难数据库(出版商)”最低求助积分说明 771842