Analysis of the Vibration Characteristics of a Leaf Spring System Using Artificial Neural Networks

板簧 人工神经网络 振动 弹簧(装置) 级联 活塞(光学) 控制理论(社会学) 工程类 结构工程 计算机科学 人工智能 声学 物理 化学工程 波前 控制(管理) 光学
作者
Mehmet Bahadır Çetinkaya,Muhammed İşci
出处
期刊:Sensors [MDPI AG]
卷期号:22 (12): 4507-4507 被引量:8
标识
DOI:10.3390/s22124507
摘要

The real-time vibrations occurring in a leaf spring system may cause undesirable effects, such as stresses, strains, deflections, and surface deformations over the system. In order to detect the most appropriate working conditions in which the leaf spring system will work more stably and also to design optimized leaf spring systems, these external effects have to be detected with high accuracy. In this work, artificial neural network-based estimators have been proposed to analyze the vibration effects on leaf spring systems. In the experimental studies carried out, the vibration effects of low, medium, and high-pressure values applied by a hydraulic piston on a steel leaf spring system have been analyzed by a 3-axial accelerometer. After the experimental studies, the Radial Basis Artificial Neural Network (RBANN) and Cascade-Forward Back-Propagation Artificial Neural Network (CFBANN) based nonlinear artificial neural network structures have been proposed to analyze the vibration data measured from the leaf spring system under relevant working conditions. The simulation results represent that the RBANN structure can estimate the real-time vibrations occurring on the leaf spring system with higher accuracy and reaches lower RMS error values when compared to the CFBANN structure. In general, it can be concluded that the RBANN and CFBANN network structures can successfully be used in the estimation of real-time vibration data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
aliu发布了新的文献求助30
4秒前
所所应助显隐采纳,获得10
4秒前
科研通AI6应助易安采纳,获得30
4秒前
GZPFJMU发布了新的文献求助10
4秒前
li发布了新的文献求助10
6秒前
charles发布了新的文献求助10
6秒前
7秒前
8秒前
XXXX发布了新的文献求助10
9秒前
隐形曼青应助七星茶采纳,获得30
10秒前
11秒前
li完成签到,获得积分10
12秒前
GZPFJMU完成签到,获得积分10
13秒前
体贴柜子完成签到 ,获得积分10
14秒前
Bystander完成签到 ,获得积分10
14秒前
温柔的中蓝完成签到,获得积分10
14秒前
15秒前
15秒前
AspenW发布了新的文献求助10
15秒前
Xie完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
18秒前
Szw666完成签到,获得积分10
18秒前
yy完成签到,获得积分10
18秒前
曦耀发布了新的文献求助10
18秒前
18秒前
贪玩的秋柔应助danli采纳,获得10
19秒前
科研通AI6应助dd采纳,获得10
19秒前
慕青应助Tigher采纳,获得10
19秒前
田様应助显隐采纳,获得10
20秒前
20秒前
XXXX完成签到,获得积分10
21秒前
02发布了新的文献求助10
22秒前
23秒前
23秒前
科研通AI6应助juan采纳,获得10
24秒前
26秒前
阳光的荠发布了新的文献求助10
29秒前
追光者完成签到,获得积分10
29秒前
思源应助孝顺的班采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638086
求助须知:如何正确求助?哪些是违规求助? 4744566
关于积分的说明 15001034
捐赠科研通 4796214
什么是DOI,文献DOI怎么找? 2562406
邀请新用户注册赠送积分活动 1521889
关于科研通互助平台的介绍 1481759