All-printed soft human-machine interface for robotic physicochemical sensing

计算机科学 软机器人 3d打印 人机系统 人工智能 机器人 人机界面 接口(物质) 人机交互 工程类 生物医学工程 操作系统 气泡 最大气泡压力法
作者
You Yu,Jiahong Li,Samuel A. Solomon,Jihong Min,Jiaobing Tu,Wei Guo,Changhao Xu,Yu Song,Wei Gao
出处
期刊:Science robotics [American Association for the Advancement of Science]
卷期号:7 (67) 被引量:239
标识
DOI:10.1126/scirobotics.abn0495
摘要

Ultrasensitive multimodal physicochemical sensing for autonomous robotic decision-making has numerous applications in agriculture, security, environmental protection, and public health. Previously reported robotic sensing technologies have primarily focused on monitoring physical parameters such as pressure and temperature. Integrating chemical sensors for autonomous dry-phase analyte detection on a robotic platform is rather extremely challenging and substantially underdeveloped. Here, we introduce an artificial intelligence–powered multimodal robotic sensing system (M-Bot) with an all-printed mass-producible soft electronic skin–based human-machine interface. A scalable inkjet printing technology with custom-developed nanomaterial inks was used to manufacture flexible physicochemical sensor arrays for electrophysiology recording, tactile perception, and robotic sensing of a wide range of hazardous materials including nitroaromatic explosives, pesticides, nerve agents, and infectious pathogens such as SARS-CoV-2. The M-Bot decodes the surface electromyography signals collected from the human body through machine learning algorithms for remote robotic control and can perform in situ threat compound detection in extreme or contaminated environments with user-interactive tactile and threat alarm feedback. The printed electronic skin–based robotic sensing technology can be further generalized and applied to other remote sensing platforms. Such diversity was validated on an intelligent multimodal robotic boat platform that can efficiently track the source of trace amounts of hazardous compounds through autonomous and intelligent decision-making algorithms. This fully printed human-machine interactive multimodal sensing technology could play a crucial role in designing future intelligent robotic systems and can be easily reconfigured toward numerous practical wearable and robotic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研dog发布了新的文献求助10
刚刚
今后应助冷傲迎梦采纳,获得10
刚刚
1秒前
Stella发布了新的文献求助10
2秒前
adobe发布了新的文献求助10
2秒前
2秒前
3秒前
酷波er应助嘿嘿采纳,获得30
3秒前
YamDaamCaa应助不想做实验采纳,获得50
3秒前
梓歆发布了新的文献求助10
3秒前
4秒前
5秒前
迅速金鱼完成签到,获得积分10
5秒前
小宇子发布了新的文献求助10
5秒前
齐俞如发布了新的文献求助10
6秒前
PanZi发布了新的文献求助10
6秒前
冯大哥完成签到,获得积分10
6秒前
斑比完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
loy完成签到,获得积分10
9秒前
10秒前
JamesPei应助DDDD采纳,获得10
11秒前
11秒前
善学以致用应助小雨采纳,获得10
11秒前
麦田稻草人完成签到,获得积分10
11秒前
zho发布了新的文献求助10
11秒前
学习要认真喽完成签到,获得积分10
12秒前
CodeCraft应助金扇扇采纳,获得10
12秒前
刘海柱发布了新的文献求助10
13秒前
大个应助飞飞采纳,获得10
13秒前
14秒前
乔乔兔发布了新的文献求助10
14秒前
15秒前
aaa发布了新的文献求助10
16秒前
16秒前
16秒前
单薄的大白菜真实的钥匙完成签到,获得积分10
17秒前
洁净的惜筠应助蒸芋芋了采纳,获得10
17秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4109446
求助须知:如何正确求助?哪些是违规求助? 3647741
关于积分的说明 11554720
捐赠科研通 3353627
什么是DOI,文献DOI怎么找? 1842410
邀请新用户注册赠送积分活动 908654
科研通“疑难数据库(出版商)”最低求助积分说明 825696