A deep hypersphere approach to high-dimensional anomaly detection

超球体 计算机科学 异常检测 自编码 子空间拓扑 边界(拓扑) 人工智能 核(代数) 模式识别(心理学) 相似性(几何) 异常(物理) 维数之咒 非线性降维 MNIST数据库 降维 数学 图像(数学) 深度学习 物理 数学分析 组合数学 凝聚态物理
作者
Jian Zheng,Hongchun Qu,Zhaoni Li,Lin Li,Xiaoming Tang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:125: 109146-109146 被引量:9
标识
DOI:10.1016/j.asoc.2022.109146
摘要

The term of Curse of Dimensionality implicitly expresses the challenge for anomaly detection in a high-dimensional space. Because the distribution of anomalies in the high-dimensional spatial data is usually too sparse to provide sufficient information for detecting anomalies. In addition, irrelevant attributes may be seen as noise in the input data, which masks the true anomalies, so that it is difficult to choose a subspace of the input data that highlights the relevant attributes. In this case, the task becomes even harder if one aims at learning a compact boundary to distinguish anomalies from normal data. To address this issue, we proposed a detection method using the combination of an autoencoder and a hypersphere. In addition, an angle kernel and a radius kernel are also derived in order to learn a compact boundary of distinguishing anomalous and normal instances. Results show that our method outperforms the state-of-the-art detection methods in anomalous detection accuracy and the ability of learning a compact boundary. Moreover, our method also addresses the issue of blurred boundary in searching normal data in high dimensional dataset and when the information is insufficient due to a limited number of potential anomalies. We find that the measurement of angle similarity between data points during searching gains more advantages for learning a compact boundary than using the measurement of distance similarity. Since angle similarity is not only helpful for flexibly controlling search in normal data region, but also tightens the searched region of anomalies nearby the boundary. We also find that noise in data as a negative factor can deteriorate detection accuracy much more quickly than dimensionality does. Our findings indicate that the determination of hypersphere radius relies more on data dimensionality in a high-dimensional space than that in a low-dimensional space. However, in a low-dimensional space the radius is more likely correlated with data volume. • Measurement of angular similarity contributes more in finding compact boundary than distance similarity. • Hypersphere radius is related to dimension in high-dimensional space, but to data volume in low-dimensional space. • Noise in data as a negative factor deteriorates detection accuracy much more quickly than dimensionality does.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yang发布了新的文献求助10
刚刚
老朱完成签到,获得积分10
1秒前
稳重千琴发布了新的文献求助30
2秒前
狂野口红发布了新的文献求助10
2秒前
2秒前
KingYugene完成签到,获得积分10
2秒前
李健应助科研通管家采纳,获得10
3秒前
HEIKU应助科研通管家采纳,获得10
3秒前
Singularity应助科研通管家采纳,获得10
3秒前
Singularity应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
guoke发布了新的文献求助20
3秒前
超级的鞅发布了新的文献求助10
3秒前
4秒前
Yang完成签到,获得积分10
5秒前
稳重绿旋发布了新的文献求助10
5秒前
skyy完成签到,获得积分10
5秒前
5秒前
水云完成签到,获得积分10
5秒前
情怀应助rong采纳,获得10
5秒前
Zyk完成签到,获得积分10
6秒前
7秒前
景景好完成签到,获得积分10
7秒前
Xavier完成签到,获得积分10
7秒前
7秒前
韩笑发布了新的文献求助10
7秒前
cc发布了新的文献求助10
7秒前
啦啦啦发布了新的文献求助10
7秒前
Ian发布了新的文献求助150
8秒前
8秒前
超级的鞅完成签到,获得积分10
10秒前
風起天岚完成签到,获得积分10
10秒前
SciGPT应助饶丹采纳,获得10
10秒前
丸子发布了新的文献求助10
11秒前
11秒前
139完成签到 ,获得积分0
11秒前
11秒前
lizhiqian2024发布了新的文献求助10
11秒前
11秒前
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808424
求助须知:如何正确求助?哪些是违规求助? 3353157
关于积分的说明 10363871
捐赠科研通 3069381
什么是DOI,文献DOI怎么找? 1685481
邀请新用户注册赠送积分活动 810558
科研通“疑难数据库(出版商)”最低求助积分说明 766193