Improved landslide susceptibility mapping using unsupervised and supervised collaborative machine learning models

山崩 计算机科学 机器学习 统一建模语言 采样(信号处理) 人工智能 样品(材料) 混合模型 随机森林 数据挖掘 地质学 岩土工程 软件 计算机视觉 化学 滤波器(信号处理) 色谱法 程序设计语言
作者
Chenxu Su,Bijiao Wang,Yunhong Lv,Mingpeng Zhang,Dalei Peng,Bate Bate,Shuai Zhang
出处
期刊:Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards [Taylor & Francis]
卷期号:17 (2): 387-405 被引量:6
标识
DOI:10.1080/17499518.2022.2088802
摘要

Datasets containing recorded landslide and non-landslide samples can greatly influence the performance of machine learning (ML) models, which are commonly used in landslide susceptibility mapping (LSM). However, the non-landslide samples cannot be directly obtained. In this study, a pattern-based approach is proposed to improve the LSM process, constructing unsupervised machine learning (UML) – supervised machine learning (SML) collaborative models in which the non-landslide samples can be reasonably selected. Two UML models, the Gaussian mixture model (GMM) and K-means, are introduced to sample the non-landslide datasets with four sampling selections (abbreviated as A, B, C and D, respectively). Then non-landslide patterns recognised by the UML models are learned by the random forest (RF). A new sensitivity index, accuracy improvement ratio (AIR), is defined to evaluate the superiority of these sampling selections. Compared with the GMM-RF model, the K-means-RF model is more capable of recognising non-landslide patterns and providing sufficient and reliable non-landslide samples. The sampling selection A of the K-means-RF with an AIR value of 2.3 is regarded as the best selection. The results indicate that the UML-SML model based on the pattern-based approach offers an effective strategy to find the non-landslide samples and has a better solution to the LSM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赴简发布了新的文献求助10
1秒前
救我完成签到,获得积分10
1秒前
怕黑冰烟完成签到 ,获得积分10
1秒前
3秒前
Ellie完成签到 ,获得积分10
4秒前
jt完成签到,获得积分10
4秒前
Alan完成签到,获得积分10
5秒前
科研通AI2S应助斯文的傲珊采纳,获得10
6秒前
yuyuyu完成签到,获得积分10
7秒前
Andy完成签到,获得积分10
8秒前
wlp鹏完成签到,获得积分10
8秒前
9秒前
银角大王完成签到,获得积分0
10秒前
北风完成签到,获得积分10
11秒前
传奇3应助学术小白w采纳,获得10
11秒前
黎黎完成签到,获得积分10
14秒前
黄天完成签到 ,获得积分20
16秒前
满意白卉完成签到 ,获得积分10
17秒前
n3pu030036应助黎黎采纳,获得20
17秒前
tt666完成签到,获得积分10
17秒前
英俊的胜完成签到,获得积分10
17秒前
18秒前
吕布完成签到,获得积分10
20秒前
林洁佳完成签到,获得积分10
20秒前
小丸子完成签到 ,获得积分10
22秒前
杰2580完成签到,获得积分10
22秒前
chenren发布了新的文献求助10
23秒前
25秒前
不是省油的灯完成签到,获得积分10
27秒前
Junanne完成签到,获得积分10
27秒前
英姑应助科研通管家采纳,获得10
28秒前
共享精神应助科研通管家采纳,获得30
28秒前
斯文败类应助科研通管家采纳,获得10
29秒前
iNk应助科研通管家采纳,获得10
29秒前
斯文败类应助科研通管家采纳,获得10
29秒前
29秒前
旧辞应助科研通管家采纳,获得50
29秒前
Accept应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
小二郎应助科研通管家采纳,获得10
29秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843337
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541332
捐赠科研通 3106253
什么是DOI,文献DOI怎么找? 1710911
邀请新用户注册赠送积分活动 823851
科研通“疑难数据库(出版商)”最低求助积分说明 774313