亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Computational techniques for the automated detection of mycobacterium tuberculosis from digitized sputum smear microscopic images: A systematic review

人工智能 肺结核 卷积神经网络 计算机科学 图像处理 结核分枝杆菌 结核病诊断 计算机辅助诊断 模式识别(心理学) 机器学习 病理 医学 图像(数学)
作者
Evans Kotei,Ramkumar Thirunavukarasu
出处
期刊:Progress in Biophysics & Molecular Biology [Elsevier]
卷期号:171: 4-16 被引量:29
标识
DOI:10.1016/j.pbiomolbio.2022.03.004
摘要

Tuberculosis is an infectious disease that is caused by Mycobacterium tuberculosis (MTB), which mostly affects the lungs of humans. Bright-field microscopy and fluorescence microscopy are two major testing techniques used for tuberculosis (TB) detection. TB bacilli were identified and counted manually from sputum under a microscope and were found to be tedious, laborious and error prone. To eliminate this problem, traditional image processing techniques and deep learning (DL) models were deployed here to build computer-aided diagnosis (CADx) systems for TB detection.In this paper, we performed a systematic review on image processing techniques used in developing computer-aided diagnosis systems for TB detection. Articles selected for this review were retrieved from publication databases such as Science Direct, ACM, IEEE Xplore, Springer Link and PubMed. After a rigorous pruning exercise, 42 articles were selected, of which 21 were journal articles and 21 were conference articles.Image processing techniques and deep neural networks such as CNN and DCNN proposed in the literature along with clinical applications are presented and discussed. The performance of these techniques has been evaluated on metrics such as accuracy, sensitivity, specificity, precision and F-1 score and is presented accordingly.CADx systems built on DL models performed better in TB detection and classification due to their abstraction of low-level features, better generalization and minimal or no human intervention in their operations. Research gaps identified in the literature have been highlighted and discussed for further investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土豆你个西红柿完成签到 ,获得积分10
刚刚
7秒前
传奇3应助荷西采纳,获得10
12秒前
Bienk完成签到,获得积分10
33秒前
34秒前
34秒前
荷西发布了新的文献求助10
38秒前
善学以致用应助荷西采纳,获得10
42秒前
45秒前
53秒前
耳东日发布了新的文献求助10
59秒前
waytrue发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助lucky采纳,获得30
1分钟前
黄昏完成签到,获得积分10
1分钟前
酷波er应助霜降采纳,获得10
1分钟前
科研通AI6应助YONGGE采纳,获得10
1分钟前
领导范儿应助琪琪采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
霜降发布了新的文献求助10
2分钟前
一只发布了新的文献求助10
2分钟前
2分钟前
科研通AI6应助一只采纳,获得10
2分钟前
2分钟前
lucky完成签到,获得积分10
2分钟前
lucky发布了新的文献求助30
2分钟前
独特鸽子完成签到 ,获得积分20
2分钟前
2分钟前
YONGGE发布了新的文献求助10
2分钟前
3分钟前
Unlisted完成签到,获得积分10
3分钟前
3分钟前
Orange应助麟10采纳,获得10
3分钟前
完美世界应助Mrz采纳,获得10
3分钟前
3分钟前
3分钟前
科研通AI2S应助Moying采纳,获得10
3分钟前
wop111应助AliEmbark采纳,获得30
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432296
求助须知:如何正确求助?哪些是违规求助? 4544984
关于积分的说明 14194962
捐赠科研通 4464323
什么是DOI,文献DOI怎么找? 2447061
邀请新用户注册赠送积分活动 1438358
关于科研通互助平台的介绍 1415229