Scale-out production of extracellular vesicles derived from natural killer cells via mechanical stimulation in a seesaw-motion bioreactor for cancer therapy

体内 生物反应器 细胞外小泡 材料科学 细胞生物学 细胞培养 生物物理学 生物 纳米技术 癌症研究 生物技术 遗传学 植物
作者
Jian Wu,Di Wu,Guohua Wu,Ho‐Pan Bei,Zihan Li,Han Xu,Yimin Wang,Dan Wu,Hui Liu,Shengyu Shi,Chao Zhao,Yibing Xu,Yong He,­Jun Li­,Changyong Wang,Xin Zhao,Shuqi Wang
出处
期刊:Biofabrication [IOP Publishing]
卷期号:14 (4): 045004-045004 被引量:23
标识
DOI:10.1088/1758-5090/ac7eeb
摘要

Abstract Extracellular vesicles (EVs) derived from immune cells have shown great anti-cancer therapeutic potential. However, inefficiency in EV generation has considerably impeded the development of EV-based basic research and clinical translation. Here, we developed a seesaw-motion bioreactor (SMB) system by leveraging mechanical stimuli such as shear stress and turbulence for generating EVs with high quality and quantity from natural killer (NK) cells. Compared to EV production in traditional static culture (229 ± 74 particles per cell per day), SMB produced NK-92MI-derived EVs at a higher rate of 438 ± 50 particles per cell per day and yielded a total number of 2 × 10 11 EVs over two weeks via continuous dynamic fluidic culture. In addition, the EVs generated from NK-92MI cells in SMB shared a similar morphology, size distribution, and protein profile to EVs generated from traditional static culture. Most importantly, the NK-92MI-derived EVs in SMB were functionally active in killing melanoma and liver cancer cells in both 2D and 3D culture conditions in vitro , as well as in suppressing melanoma growth in vivo . We believe that SMB is an attractive approach to producing EVs with high quality and quantity; it can additionally enhance EV production from NK92-MI cells and promote both the basic and translational research of EVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Naza1119发布了新的文献求助10
1秒前
wealan发布了新的文献求助10
2秒前
Jasper应助钱塘小虾米采纳,获得10
2秒前
WY发布了新的文献求助30
3秒前
端庄的以寒完成签到,获得积分10
3秒前
CipherSage应助keira采纳,获得10
3秒前
曾经梦松完成签到,获得积分10
4秒前
丘比特应助清爽大山采纳,获得10
4秒前
研友_VZG7GZ应助hooke采纳,获得10
4秒前
XIXI完成签到,获得积分10
5秒前
pengpeng完成签到,获得积分10
5秒前
5秒前
lanxinyue完成签到,获得积分0
5秒前
难过的一一完成签到,获得积分10
5秒前
RapGod完成签到,获得积分10
5秒前
李爱国应助111采纳,获得10
6秒前
宇文无施完成签到,获得积分10
6秒前
7秒前
什么什么哇偶完成签到 ,获得积分10
7秒前
烟花应助Zll采纳,获得10
8秒前
8秒前
zzz发布了新的文献求助10
8秒前
科研通AI5应助地表飞猪采纳,获得10
8秒前
9秒前
wuyanan513发布了新的文献求助10
9秒前
奋斗灵竹完成签到,获得积分10
11秒前
12秒前
不吃芹菜发布了新的文献求助30
13秒前
鉨汏闫发布了新的文献求助10
13秒前
14秒前
Lance先生完成签到,获得积分10
15秒前
文艺完成签到,获得积分10
16秒前
科研三井泽完成签到,获得积分10
18秒前
许甜甜鸭应助AHR采纳,获得10
18秒前
18秒前
sunsmile完成签到,获得积分10
18秒前
不吃芹菜完成签到,获得积分10
18秒前
19秒前
Leofar发布了新的文献求助10
19秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
The Effect of Irrigation Solutions on Recurrence of Chronic Subdural Hematoma: A Consecutive Cohort Study of 234 Patients 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Introduction to Linear Optimization, by Dimitris Bertsimas and John N. Tsitsiklis 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828462
求助须知:如何正确求助?哪些是违规求助? 3370778
关于积分的说明 10464992
捐赠科研通 3090721
什么是DOI,文献DOI怎么找? 1700503
邀请新用户注册赠送积分活动 817885
科研通“疑难数据库(出版商)”最低求助积分说明 770571