神经保护
热休克蛋白
热休克蛋白70
神经科学
突触
细胞生物学
中枢神经系统
生物
神经系统
脊髓
生物化学
基因
标识
DOI:10.1196/annals.1391.032
摘要
Abstract : Manipulation of the cellular stress response offers strategies to protect brain cells from damage induced by ischemia and neurodegenerative diseases. Overexpression of Hsp70 reduced ischemic injury in the mammalian brain. Investigation of the domains within Hsp70 that confers ischemic neuroprotection revealed the importance of the carboxyl‐terminal domain. Arimoclomol, a coinducer of heat shock proteins, delayed progression of amyotrophic lateral sclerosis (ALS) in a mouse model in which motor neurons in the spinal cord and motor cortex degenerate. Celastrol, a promising candidate as an agent to counter neurodegenerative diseases, induced expression of a set of Hsps in differentiated neurons grown in tissue culture. Heat shock “preconditioning” protected the nervous system at the functional level of the synapse and selective overexpression of Hsp70 enhanced the level of synaptic protection. Following hyperthermia, constitutively expressed Hsc70 increased in synapse‐rich areas of the brain where it associates with Hsp40 to form a complex that can refold denatured proteins. Stress tolerance in neurons is not solely dependent on their own Hsps but can be supplemented by Hsps from adjacent glial cells. Hence, application of exogenous Hsps at neural injury sites is an effective strategy to maintain neuronal viability.
科研通智能强力驱动
Strongly Powered by AbleSci AI