De novo design of epitope-specific antibodies against soluble and multipass membrane proteins with high specificity, developability, and function

表位 抗体 功能(生物学) 化学 计算生物学 生物化学 生物 细胞生物学 免疫学
作者
Surojit Biswas
标识
DOI:10.1101/2025.01.21.633066
摘要

We present JAM, a generative protein design system that enables fully computational design of antibodies with therapeutic-grade properties for the first time. JAM generates antibodies de novo in both single-domain (VHH) and paired (scFv/mAb) antibody formats that achieve double-digit nanomolar affinities, strong early-stage developability profiles, and precise epitope targeting without experimental optimization. We demonstrate JAM's capabilities across multiple therapeutic contexts, including the first fully computationally designed antibodies to multipass membrane proteins - Claudin-4 and CXCR7. Against SARS-CoV-2, JAM-designed antibodies achieved sub-nanomolar pseudovirus neutralization potency, with early stage developability metrics achieving established clinical benchmarks. We show that increasing test-time computation by allowing JAM to iteratively introspect on its outputs substantially improves both binding success rates and affinities, representing the first evidence that test-time compute scaling may extend to physical protein design systems. The entire process from design to recombinant characterization requires <6 weeks, and multiple targets can be pursued in parallel with minimal additional experimental overhead. These results establish de novo antibody design as a practical approach for therapeutic discovery, offering paths to both improved efficiency in standard workflows and new opportunities for previously intractable targets. Disclaimer: While we provide detailed descriptions of experimental methods and success metrics, we choose not disclose methodological details of JAM for commercial reasons.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
水lunwen完成签到 ,获得积分10
1秒前
albert Tesla完成签到,获得积分20
1秒前
大白完成签到,获得积分20
1秒前
吨吨喝水完成签到,获得积分10
1秒前
狄绮晴发布了新的文献求助10
2秒前
2秒前
上官若男应助up采纳,获得10
3秒前
爆米花应助左岸SUPER采纳,获得10
3秒前
3秒前
科研求求你嘛完成签到,获得积分10
4秒前
开放的沛文完成签到,获得积分10
4秒前
科研通AI5应助MrH采纳,获得10
5秒前
6秒前
许王立完成签到 ,获得积分10
6秒前
啦啦啦完成签到,获得积分10
6秒前
chengwenyu发布了新的文献求助10
6秒前
谨记发布了新的文献求助30
6秒前
6秒前
自觉石头完成签到 ,获得积分10
6秒前
科研完成签到 ,获得积分10
7秒前
瑶瑶酱完成签到,获得积分10
7秒前
8秒前
鹿城完成签到 ,获得积分10
8秒前
小蘑菇应助nuo采纳,获得10
8秒前
Akashi完成签到,获得积分10
8秒前
cdercder应助tjfwg采纳,获得10
9秒前
G秋发布了新的文献求助10
9秒前
MX应助鳄鱼采纳,获得20
10秒前
Lze发布了新的文献求助10
10秒前
11秒前
追云断月完成签到,获得积分10
11秒前
lylyzhl完成签到,获得积分20
11秒前
11秒前
优秀小笼包完成签到,获得积分10
12秒前
12秒前
快乐难敌发布了新的文献求助10
12秒前
13秒前
脑洞疼应助何哈哈采纳,获得10
13秒前
lynn完成签到,获得积分10
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837906
求助须知:如何正确求助?哪些是违规求助? 3379958
关于积分的说明 10511877
捐赠科研通 3099610
什么是DOI,文献DOI怎么找? 1707177
邀请新用户注册赠送积分活动 821447
科研通“疑难数据库(出版商)”最低求助积分说明 772617