Improved prediction of antimicrobial resistance inKlebsiella pneumoniaeusing machine learning

肺炎克雷伯菌 抗生素耐药性 抗生素 磷霉素 他唑巴坦 阿米卡星 头孢菌素 抗菌剂 抵抗性 计算生物学 医学 机器学习 生物 微生物学 计算机科学 基因 遗传学 大肠杆菌 亚胺培南 整合子
作者
Jordi Sevilla-Fortuny,Fernando Gónzález‐Candelas,Neris García‐González
标识
DOI:10.1101/2024.12.10.627815
摘要

Abstract Klebsiella pneumoniae is an important cause of healthcare-associated infections, with high levels of antimicrobial resistance (AMR) to critical antibiotics such as carbapenems and third-generation cephalosporins (3GCs). Accurate antimicrobial susceptibility detection is essential for guiding appropriate treatment. In this study, we evaluated the efficacy of machine learning (ML) models for predicting AMR phenotypes in K. pneumoniae particularly for antibiotics for which rule-based approaches fail. We analyzed a dataset of 5,907 K. pneumoniae genomes from public databases and a genomic surveillance project in Spanish hospitals. ML models were trained to predict AMR phenotypes using genomic features, and their performance was compared to ResFinder, which implements a conventional rule-based approach. Models were evaluated based on predictive accuracy across antibiotics. Additionally, we conducted a detailed analysis of the genomic features associated with AMR identified by ML to identify new putative AMR determinants. ResFinder exhibited low prediction accuracy for amikacin, fosfomycin, and piperacillin/tazobactam, whereas ML models significantly improved the prediction accuracy for these antibiotics. Moreover, we provide insights into why rule-based methods failed in these cases, specifically related to the genes acc(6)-Ib-cr , fosA , and bla OXA-1 , respectively. Finally, we found possible genetic factors related to resistance for each antibiotic. Our findings underscore the value of ML models in AMR prediction based on genome information for K. pneumoniae , especially in challenging cases where traditional methods have low success rates. Continued evaluation and refinement of ML approaches are essential for applying these methods to enhance AMR detection in clinical and public health contexts. Importance To combat antimicrobial resistance (AMR), the rapid and accurate identification of resistance phenotypes is essential for guiding appropriate therapy. In this study, we demonstrate the significant potential of machine learning (ML) to improve AMR prediction in Klebsiella pneumoniae using genomic data. Our findings reveal that gold standard rule-based methods for predicting AMR from genomic data underperform for antibiotics such as amikacin, fosfomycin, and piperacillin/tazobactam. In this study, we identified the genomic determinants that mislead resistance predictions in rule-based methods providing insights that can refine existing rule-based approaches. Moreover we used ML models that improved the prediction accuracy for these antibiotics and used these models to uncover potential new AMR-associated genes that contribute to a deeper understanding of resistance mechanisms. While these findings are specific to K. pneumoniae , the ML approach is broadly applicable to other pathogens facing similar challenges, enabling improved AMR prediction without reliance on prior knowledge.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sresr完成签到,获得积分10
刚刚
今天看文献了吗完成签到,获得积分10
刚刚
1秒前
wer完成签到 ,获得积分10
1秒前
陈发辉发布了新的文献求助10
2秒前
zzx发布了新的文献求助10
2秒前
???完成签到,获得积分10
2秒前
建安发布了新的文献求助10
3秒前
3秒前
Lizhe完成签到,获得积分20
3秒前
洛城山客发布了新的文献求助10
3秒前
3秒前
4秒前
李哈哈发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
Lizhe发布了新的文献求助10
6秒前
落 风完成签到,获得积分10
7秒前
cdercder应助红李子采纳,获得10
7秒前
细腻的念真完成签到,获得积分20
7秒前
tooty完成签到,获得积分10
7秒前
Panchael完成签到,获得积分10
7秒前
cbxzhsun发布了新的文献求助20
7秒前
popo完成签到,获得积分10
8秒前
8秒前
hhhh完成签到,获得积分10
9秒前
一个大西瓜完成签到,获得积分10
9秒前
氵原完成签到,获得积分20
9秒前
1111发布了新的文献求助10
9秒前
Winkhl完成签到,获得积分20
9秒前
9秒前
10秒前
闫闫冰峰发布了新的文献求助10
10秒前
10秒前
学术小子完成签到 ,获得积分20
10秒前
10秒前
11秒前
12秒前
12秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830824
求助须知:如何正确求助?哪些是违规求助? 3373141
关于积分的说明 10478298
捐赠科研通 3093303
什么是DOI,文献DOI怎么找? 1702447
邀请新用户注册赠送积分活动 819066
科研通“疑难数据库(出版商)”最低求助积分说明 771232