紫杉醇
材料科学
纳米载体
药物输送
血脑屏障
肺癌
不利影响
药品
癌症
药理学
内科学
医学
中枢神经系统
纳米技术
作者
Shuaijun Li,Caiting Meng,Qian Hao,Ruina Zhou,Luyao Dai,Yucheng Guo,Sitong Zhao,Xin Zhou,Chunju Lou,Ji Xu,Peng Xu,Jinfan Yang,Yifan Ding,LV Yan-ni,Shengli Han,Shuai Cheng Li,Jing Li,Huafeng Kang,Zhengtao Xiao,Mingqian Tan,Xiaobin Ma,Hao Wu
出处
期刊:Biomaterials
[Elsevier BV]
日期:2024-03-14
卷期号:307: 122537-122537
被引量:3
标识
DOI:10.1016/j.biomaterials.2024.122537
摘要
Non-small cell lung cancer (NSCLC) brain metastases present a significant treatment challenge due to limited drug delivery efficiency and severe adverse reactions. In this study, we address these challenges by designing a "on/off" switchable crosslinked paclitaxel (PTX) nanocarrier, BPM-PD, with novel ultra-pH-sensitive linkages (pH 6.8 to 6.5). BPM-PD demonstrates a distinct "on/off" switchable release of the anti-cancer drug paclitaxel (PTX) in response to the acidic extratumoral microenvironment. The "off" state of BPM-PD@PTX effectively prevents premature drug release in the blood circulation, blood-brain barrier (BBB)/blood-tumor barrier (BTB), and normal brain tissue, surpassing the clinical PTX-nanoformulation (nab-PTX). Meanwhile, the "on" state facilitates precise delivery to NSCLC brain metastases cells. Compared to nab-PTX, BPM-PD@PTX demonstrates improved therapeutic efficacy with a reduced tumor area (only 14.6%) and extended survival duration, while mitigating adverse reactions (over 83.7%) in aspartate aminotransferase (AST) and alanine aminotransferase (ALT), offering a promising approach for the treatment of NSCLC brain metastases. The precise molecular switch also helped to increase the PTX maximum tolerated dose from 25 mg/kg to 45 mg/kg This research contributes to the field of cancer therapeutics and has significant implications for improving the clinical outcomes of NSCLC patients.
科研通智能强力驱动
Strongly Powered by AbleSci AI