Improved genetic algorithm for mobile robot path planning in static environments

初始化 计算机科学 运动规划 遗传算法 人口 启发式 数学优化 概率逻辑 路径(计算) 人工智能 机器人 算法 机器学习 数学 人口学 社会学 程序设计语言
作者
Mohd Nadhir Ab Wahab,Amril Nazir,Ashraf Khalil,Wong Jun Ho,Muhammad Firdaus Akbar,Mohd Halim Mohd Noor,Ahmad Sufril Azlan Mohamed
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123762-123762 被引量:23
标识
DOI:10.1016/j.eswa.2024.123762
摘要

The genetic algorithm (GA) is a well-known meta-heuristic technique for addressing the static mobile robot global path planning (MRGPP) issue. Current GA, however, has certain shortcomings, such as inefficient population initialization and low-quality solutions. As an enhanced GA, a Linear Rank-based, or Clearance-based Probabilistic Road Map (CBPRM), technique is proffered to overcome these difficulties. The new model guides the population initialization process by using the fitness score of each cell in the environment, lowering the number of infeasible pathways created. Furthermore, a genetic operator combination is proposed to balance the global and local search and increase the quality of the optimum path created in terms of path length and safety. Two experiments were carried out to assess the suggested GA. The novel population initialization strategy was compared to two current models in the first experiment, and the findings revealed that the suggested approach greatly decreases the number of infeasible pathways created and the time required for the process. The ideal genetic operator combination was determined in the second experiment, and the results revealed that the suggested combination improves the quality of the optimal path created in fewer iterations. In summary, the proposed GA improves on previous models by proposing a novel population initialization method and combining numerous genetic operators. These alterations improve the quality of the optimum path and indicate the suggested model's potential for solving the MRGPP challenge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助张瑞宁采纳,获得10
1秒前
现代梦琪完成签到 ,获得积分10
2秒前
automan完成签到,获得积分10
2秒前
霁琛--发布了新的文献求助10
4秒前
英姑应助Morgen采纳,获得10
5秒前
勤恳书包完成签到,获得积分10
6秒前
科研通AI5应助酷炫的铸海采纳,获得10
7秒前
明理迎曼完成签到,获得积分10
10秒前
Pooh完成签到 ,获得积分10
11秒前
喜马拉雅川完成签到,获得积分10
12秒前
15秒前
ff完成签到 ,获得积分20
16秒前
17秒前
17秒前
19秒前
19秒前
WongGingYong发布了新的文献求助10
20秒前
7ohnny完成签到,获得积分10
20秒前
懒羊羊完成签到 ,获得积分10
22秒前
手帕很忙发布了新的文献求助10
23秒前
23秒前
张瑞宁发布了新的文献求助10
25秒前
WongGingYong完成签到,获得积分10
25秒前
zlx完成签到 ,获得积分10
25秒前
ZW发布了新的文献求助10
26秒前
26秒前
27秒前
龙骑士25发布了新的文献求助10
28秒前
Morgen发布了新的文献求助10
30秒前
33秒前
魄魄olm发布了新的文献求助10
34秒前
36秒前
独特涫完成签到,获得积分10
36秒前
乐观的幼珊完成签到,获得积分10
37秒前
Morgen完成签到,获得积分10
38秒前
mk完成签到,获得积分10
38秒前
40秒前
pluto应助科研通管家采纳,获得10
41秒前
李健应助科研通管家采纳,获得10
41秒前
ICEBLUE应助科研通管家采纳,获得10
41秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816996
求助须知:如何正确求助?哪些是违规求助? 3360443
关于积分的说明 10407813
捐赠科研通 3078348
什么是DOI,文献DOI怎么找? 1690737
邀请新用户注册赠送积分活动 814045
科研通“疑难数据库(出版商)”最低求助积分说明 767985