Bioinformatics and system biology approach to identify potential common pathogenesis for COVID-19 infection and osteoarthritis

基因 ETS1型 生物 基因调控网络 生物信息学 候选基因 药物重新定位 小RNA 转录因子 基因表达 计算生物学 遗传学 药理学 药品
作者
Ziyi Chen,Wenjuan Wang,Hao Jue,Yinghui Hua
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:6
标识
DOI:10.1038/s41598-023-32555-y
摘要

A growing of evidence has showed that patients with osteoarthritis (OA) had a higher coronavirus 2019 (COVID-19) infection rate and a poorer prognosis after infected it. Additionally, scientists have also discovered that COVID-19 infection might cause pathological changes in the musculoskeletal system. However, its mechanism is still not fully elucidated. This study aims to further explore the sharing pathogenesis of patients with both OA and COVID-19 infection and find candidate drugs. Gene expression profiles of OA (GSE51588) and COVID-19 (GSE147507) were obtained from the Gene Expression Omnibus (GEO) database. The common differentially expressed genes (DEGs) for both OA and COVID-19 were identified and several hub genes were extracted from them. Then gene and pathway enrichment analysis of the DEGs were performed; protein-protein interaction (PPI) network, transcription factor (TF)-gene regulatory network, TF-miRNA regulatory network and gene-disease association network were constructed based on the DEGs and hub genes. Finally, we predicted several candidate molecular drugs related to hub genes using DSigDB database. The receiver operating characteristic curve (ROC) was applied to evaluate the accuracy of hub genes in the diagnosis of both OA and COVID-19. In total, 83 overlapping DEGs were identified and selected for subsequent analyses. CXCR4, EGR2, ENO1, FASN, GATA6, HIST1H3H, HIST1H4H, HIST1H4I, HIST1H4K, MTHFD2, PDK1, TUBA4A, TUBB1 and TUBB3 were screened out as hub genes, and some showed preferable values as diagnostic markers for both OA and COVID-19. Several candidate molecular drugs, which are related to the hug genes, were identified. These sharing pathways and hub genes may provide new ideas for further mechanistic studies and guide more individual-based effective treatments for OA patients with COVID-19 infection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
myc发布了新的文献求助10
1秒前
Xian发布了新的文献求助10
1秒前
动人的诗桃完成签到,获得积分10
2秒前
英姑应助aass采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
dgq_81完成签到,获得积分10
4秒前
社会主义接班人完成签到 ,获得积分10
5秒前
ACE关闭了ACE文献求助
7秒前
科研通AI6应助yk采纳,获得10
8秒前
8秒前
靖柔发布了新的文献求助20
10秒前
英姑应助Jeffreyzhong采纳,获得10
10秒前
领导范儿应助单薄店员采纳,获得10
11秒前
CodeCraft应助myc采纳,获得10
11秒前
典雅灵寒完成签到,获得积分10
12秒前
共享精神应助wml采纳,获得20
12秒前
研友_LNMmW8发布了新的文献求助30
13秒前
六六大顺完成签到 ,获得积分10
14秒前
kk完成签到,获得积分10
14秒前
大模型应助失眠冷卉采纳,获得10
21秒前
东东完成签到,获得积分10
21秒前
26秒前
26秒前
27秒前
幸福大白发布了新的文献求助10
27秒前
Siyu完成签到 ,获得积分10
28秒前
30秒前
33秒前
郜不正完成签到,获得积分10
33秒前
33秒前
34秒前
量子星尘发布了新的文献求助10
34秒前
35秒前
失眠冷卉发布了新的文献求助10
36秒前
江夏完成签到,获得积分10
36秒前
斯文败类应助Edison采纳,获得10
37秒前
顺心的紫槐完成签到 ,获得积分10
38秒前
38秒前
River发布了新的文献求助10
39秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4282077
求助须知:如何正确求助?哪些是违规求助? 3810238
关于积分的说明 11935469
捐赠科研通 3456846
什么是DOI,文献DOI怎么找? 1895743
邀请新用户注册赠送积分活动 944822
科研通“疑难数据库(出版商)”最低求助积分说明 848561