亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Method for Segmentation of Litchi Branches Based on the Improved DeepLabv3+

分割 人工智能 计算机科学 联营 导线 像素 骨干网 残余物 数学 模式识别(心理学) 计算机视觉 算法 地理 大地测量学 计算机网络
作者
Jiaxing Xie,Tingwei Jing,Binhan Chen,Jiajun Peng,Xiaowei Zhang,Peihua He,Huili Yin,Daozong Sun,Weixing Wang,Ao Xiao,Shilei Lyu,Jun Li
出处
期刊:Agronomy [Multidisciplinary Digital Publishing Institute]
卷期号:12 (11): 2812-2812 被引量:13
标识
DOI:10.3390/agronomy12112812
摘要

It is necessary to develop automatic picking technology to improve the efficiency of litchi picking, and the accurate segmentation of litchi branches is the key that allows robots to complete the picking task. To solve the problem of inaccurate segmentation of litchi branches under natural conditions, this paper proposes a segmentation method for litchi branches based on the improved DeepLabv3+, which replaced the backbone network of DeepLabv3+ and used the Dilated Residual Networks as the backbone network to enhance the model’s feature extraction capability. During the training process, a combination of Cross-Entropy loss and the dice coefficient loss was used as the loss function to cause the model to pay more attention to the litchi branch area, which could alleviate the negative impact of the imbalance between the litchi branches and the background. In addition, the Coordinate Attention module is added to the atrous spatial pyramid pooling, and the channel and location information of the multi-scale semantic features acquired by the network are simultaneously considered. The experimental results show that the model’s mean intersection over union and mean pixel accuracy are 90.28% and 94.95%, respectively, and the frames per second (FPS) is 19.83. Compared with the classical DeepLabv3+ network, the model’s mean intersection over union and mean pixel accuracy are improved by 13.57% and 15.78%, respectively. This method can accurately segment litchi branches, which provides powerful technical support to help litchi-picking robots find branches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助Gaopkid采纳,获得10
2秒前
yema完成签到 ,获得积分10
2秒前
Gaopkid完成签到,获得积分10
6秒前
9秒前
momo完成签到,获得积分10
9秒前
10秒前
momo发布了新的文献求助10
14秒前
123456发布了新的文献求助10
15秒前
20秒前
123456完成签到,获得积分10
24秒前
25秒前
小马甲应助科研通管家采纳,获得10
33秒前
香蕉觅云应助科研通管家采纳,获得30
33秒前
天天快乐应助科研通管家采纳,获得10
33秒前
在水一方应助科研通管家采纳,获得10
33秒前
科研学术完成签到,获得积分10
34秒前
Owen应助不可说采纳,获得10
39秒前
Z可完成签到 ,获得积分10
44秒前
不可说完成签到,获得积分10
44秒前
45秒前
不可说发布了新的文献求助10
52秒前
矮小的元灵完成签到 ,获得积分10
53秒前
谨慎初蝶完成签到,获得积分10
56秒前
wwho_O完成签到 ,获得积分10
57秒前
852应助感性的梦竹采纳,获得10
1分钟前
CYC完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
恭喜发财发布了新的文献求助10
1分钟前
LIVE完成签到,获得积分20
1分钟前
mashibeo完成签到,获得积分10
1分钟前
1分钟前
zhangyue7777完成签到,获得积分10
1分钟前
科研通AI5应助恭喜发财采纳,获得10
1分钟前
VV2001完成签到,获得积分10
1分钟前
yuyu完成签到,获得积分10
1分钟前
大妙妙完成签到 ,获得积分10
1分钟前
燕荣完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
How to Price: A Guide to Pricing Techniques and Yield Management 200
Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833674
求助须知:如何正确求助?哪些是违规求助? 3376149
关于积分的说明 10492072
捐赠科研通 3095700
什么是DOI,文献DOI怎么找? 1704647
邀请新用户注册赠送积分活动 820054
科研通“疑难数据库(出版商)”最低求助积分说明 771792