Li-SegPNet: Encoder-Decoder Mode Lightweight Segmentation Network for Colorectal Polyps Analysis

计算机科学 编码器 人工智能 联营 掷骰子 分割 水准点(测量) 棱锥(几何) 模式识别(心理学) 判别式 图像分割 特征(语言学) 数学 物理 光学 哲学 操作系统 语言学 大地测量学 地理 几何学
作者
Pallabi Sharma,Anmol Gautam,Pallab Maji,Ram Bilas Pachori,Bunil Kumar Balabantaray
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:70 (4): 1330-1339 被引量:37
标识
DOI:10.1109/tbme.2022.3216269
摘要

One of the fundamental and crucial tasks for the automated diagnosis of colorectal cancer is the segmentation of the acute gastrointestinal lesions, most commonly colorectal polyps. Therefore, in this work, we present a novel lightweight encoder-decoder mode of architecture with the attention mechanism to address this challenging task.The proposed Li-SegPNet architecture harnesses cross-dimensional interaction in feature maps with novel encoder block with modified triplet attention. We have used atrous spatial pyramid pooling to handle the problem of segmenting objects at multiple scales. We also address the semantic gap between the encoder and decoder through a modified skip connection using attention gating.We applied our model to colonoscopy still images and trained and validated it on two publicly available datasets, Kvasir-SEG and CVC-ClinicDB. We achieve mean Intersection-Over-Union (mIoU) and dice scores of 0.88, 0.9058 and 0.8969, 0.9372 on Kvasir-SEG and CVC-ClinicDB, respectively. We analyze the generalizability of Li-SegPNet by testing it on two independent previously unseen datasets, Hyper-Kvasir and EndoTect 2020, and establish the model efficiency in cross-dataset evaluation. We employ multi-scale testing to examine the model performance on different sizes of polyps. Li-SegPNet performs best on medium-sized polyps with a mIoU and dice score of 0.9086 and 0.9137, respectively on the Kvasir-SEG dataset and 0.9425, 0.9434 of mIoU and dice score, respectively on CVC-ClinicDB.The experimental results convey that we establish a new benchmark on these four datasets for the segmentation of polyps.The proposed model can be used as a new benchmark model for polyps segmentation. Lesser parameters in comparison to other models give the edge in the applicability of the proposed Li-SegPNet model in real-time clinical analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助直率火车采纳,获得10
刚刚
哎呀妈呀完成签到,获得积分10
1秒前
2秒前
3秒前
5秒前
5秒前
桐桐应助心随以动采纳,获得10
6秒前
dyy完成签到,获得积分10
6秒前
anastasia完成签到,获得积分10
6秒前
朱先生完成签到 ,获得积分10
6秒前
7秒前
kkkking完成签到,获得积分10
7秒前
情怀应助科研通管家采纳,获得10
9秒前
YH2完成签到,获得积分10
9秒前
9秒前
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
kkkking发布了新的文献求助10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
15136780701完成签到 ,获得积分10
9秒前
隐尘发布了新的文献求助10
9秒前
我是老大应助万橙采纳,获得30
10秒前
刘丽红完成签到,获得积分10
10秒前
科研通AI6应助zzacc采纳,获得10
11秒前
11完成签到 ,获得积分10
11秒前
期待未来的自己应助Y1采纳,获得10
12秒前
打打应助夜半微风采纳,获得10
13秒前
有缘人完成签到,获得积分10
13秒前
14秒前
情怀应助忍冬采纳,获得30
14秒前
xiangkun发布了新的文献求助10
14秒前
雾散完成签到,获得积分0
15秒前
科研yu发布了新的文献求助10
15秒前
17秒前
现代绮玉完成签到,获得积分10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4722213
求助须知:如何正确求助?哪些是违规求助? 4081763
关于积分的说明 12622700
捐赠科研通 3787285
什么是DOI,文献DOI怎么找? 2091627
邀请新用户注册赠送积分活动 1117645
科研通“疑难数据库(出版商)”最低求助积分说明 994467