臭氧
人口
死亡率
人口学
中国
环境科学
耦合模型比对项目
气候学
地理
气象学
气候变化
生物
生态学
气候模式
地质学
社会学
考古
作者
Lei Chen,Hong Liao,Jia Zhu,Ke Li,Yang Bai,Xu Yue,Yang Yang,Jianlin Hu,Meigen Zhang
标识
DOI:10.1016/j.scitotenv.2022.159972
摘要
We systematically examine historical and future changes in premature respiratory mortalities attributable to ozone (O3) exposure (O3-mortality) in China and identify the leading cause of respective change for the first time. The historical assessment for 2013-2019 is based on gridded O3 concentrations generated by a multi-source-data-fusion algorithm; the future prediction for 2019-2030 uses gridded O3 concentrations projected by four Coupled Model Intercomparison Project Phase 6 (CMIP6) models under three Shared Socioeconomic Pathways (SSP) scenarios. During 2013-2019, national annual O3-mortality is 176.3 thousand (95%CI: 123.5-224.0 thousand) averaged over 2013-2019 with an increasing trend of 14.1 thousand yr-1 (95%CI: 10.2-17.4 thousand yr-1); sensitivity experiments show that the O3-mortality varies at a rate of +12.7 (95%CI: 9.2-15.6), +5.8 (95%CI: 4.0-7.4), +1.0 (95%CI: 0.7-1.2), -5.4 (95%CI: -6.9 to -3.7) thousand yr-1, owing to changes in O3 concentration, population age structure, population size, mortality rate for respiratory disease, respectively. The deterioration of O3 air quality, shown as significant increase in O3 concentration, is identified as the primary factor which contributes 90.1 % of 2013-2019 O3-mortality rise. Compared with O3-mortality estimated in this study, the widely-used O3-mortality assessment method based on urban-site-dominant O3 measurements generates close national O3-mortality but overestimates (underestimates) provincial O3-mortality in coastal (central) provinces. From 2019 to 2030, national O3-mortality is projected to increase by 50.4-103.7 thousand under different SSP scenarios. The change in age structure (i.e. population aging) alone will result in significant O3-mortality rises of 137.9-160.5 thousand. Compared with 2013-2019 rapid O3 increase (+2.5 μg m-3 yr-1 at national level), O3 concentrations are projected to increase at a lower rate (+0.4 μg m-3 yr-1 in SSP5-8.5) or even decrease (-0.7 μg m-3 yr-1 in SSP1-2.6) from 2019 to 2030. Therefore, population aging, in place of O3 air quality deterioration, will become the leading cause of future O3-mortality rises during the coming decade.
科研通智能强力驱动
Strongly Powered by AbleSci AI