Simulation of flow field in silicon single-crystal growth using physics-informed neural network with spatial information

物理 流量(数学) 机械 非线性系统 Crystal(编程语言) 有限体积法 应用数学 计算机科学 数学 光电子学 量子力学 程序设计语言
作者
Shuyan Shi,Ding Liu,Zhiran Huo
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (11) 被引量:7
标识
DOI:10.1063/5.0123811
摘要

Melt convection plays a crucial role in the growth of silicon single crystals. In particular, melt flow transfers mass and heat, and it may strongly affect the crystal growth conditions. Understanding and controlling convection remains a significant challenge in industrial crystal production. Currently, numerical methods such as the finite element method and the finite volume method are mainly used to simulate melt convection in the crystal growth process. However, these methods are not suitable for most applications with real-time requirements. Physics-informed neural networks (PINNs) have the advantages of fast calculation and wide application. They provide a new concept for the numerical solutions of nonlinear partial differential equations (PDEs). This paper proposes a PINN with spatial information to solve the silicon melt flow model, which does not depend on any simulation data. As the network depth (number of layers) increases, the derivative information in the PDE loss becomes weak, which reduces the expression of the original features in the loss function. Therefore, this study introduces spatial information into the hidden layer of the network, thereby enhancing the correlation between the network and the original input and improving the expression ability of the network. Specifically, silicon melt flow models under three rotating conditions are considered. Compared with other methods, the proposed algorithm can accurately capture regions with complex local morphology. The experimental results reveal the flow characteristics of the silicon melt and confirm the effectiveness of the proposed algorithm. All codes and data attached to this manuscript are publicly available on the following websites: https://github.com/callmedrcom/SIPINN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸运花花完成签到,获得积分10
刚刚
刚刚
Koi应助mayamaya采纳,获得10
1秒前
科研通AI5应助ainan采纳,获得10
1秒前
zbylaosiji发布了新的文献求助10
1秒前
打工狗发布了新的文献求助10
1秒前
酷酷怀亦完成签到,获得积分20
2秒前
青松果完成签到,获得积分10
2秒前
haha完成签到,获得积分10
2秒前
走四方发布了新的文献求助10
2秒前
2秒前
2秒前
Ca完成签到,获得积分10
3秒前
3秒前
3秒前
随风而动123完成签到,获得积分10
3秒前
xiaoxiao发布了新的文献求助10
3秒前
4秒前
yuyu完成签到,获得积分10
4秒前
orixero应助内向靖巧采纳,获得10
4秒前
5秒前
无花果应助yueshangshuang采纳,获得10
5秒前
Alex发布了新的文献求助10
5秒前
danielbbbb发布了新的文献求助30
6秒前
sun完成签到 ,获得积分20
6秒前
6秒前
sophie完成签到,获得积分10
6秒前
8秒前
9秒前
天真的羊青完成签到 ,获得积分10
9秒前
小张发布了新的文献求助10
10秒前
香蕉子骞完成签到 ,获得积分10
10秒前
10秒前
老实的孤丹完成签到,获得积分10
10秒前
11秒前
在水一方应助俊逸的代曼采纳,获得10
11秒前
LongSun发布了新的文献求助10
13秒前
yueshangshuang完成签到,获得积分10
13秒前
spp完成签到,获得积分10
13秒前
魁梧的涵柏完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4289976
求助须知:如何正确求助?哪些是违规求助? 3817165
关于积分的说明 11953820
捐赠科研通 3461005
什么是DOI,文献DOI怎么找? 1898370
邀请新用户注册赠送积分活动 946842
科研通“疑难数据库(出版商)”最低求助积分说明 849906