清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

RetVes segmentation: A pseudo-labeling and feature knowledge distillation optimization technique for retinal vessel channel enhancement

分割 计算机科学 特征(语言学) 人工智能 频道(广播) 视网膜 模式识别(心理学) 计算机视觉 化学 生物化学 电信 哲学 语言学
作者
Favour Ekong,Yongbin Yu,Rutherford Agbeshi Patamia,Kwabena Sarpong,Chiagoziem C. Ukwuoma,Akpanika Robert Ukot,Jingye Cai
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:182: 109150-109150
标识
DOI:10.1016/j.compbiomed.2024.109150
摘要

Recent advancements in retinal vessel segmentation, which employ transformer-based and domain-adaptive approaches, show promise in addressing the complexity of ocular diseases such as diabetic retinopathy. However, current algorithms face challenges in effectively accommodating domain-specific variations and limitations of training datasets, which fail to represent real-world conditions comprehensively. Manual inspection by specialists remains time-consuming despite technological progress in medical imaging, underscoring the pressing need for automated and robust segmentation techniques. Additionally, these methods have deficiencies in handling unlabeled target sets, requiring extra preprocessing steps and manual intervention, which hinders their scalability and practical application in clinical settings. This research introduces a novel framework that employs semi-supervised domain adaptation and contrastive pre-training to address these limitations. The proposed model effectively learns from target data by implementing a novel pseudo-labeling approach and feature-based knowledge distillation within a temporal convolutional network (TCN) and extracts robust, domain-independent features. This approach enhances cross-domain adaptation, significantly enhancing the model's versatility and performance in clinical settings. The semi-supervised domain adaptation component overcomes the challenges posed by domain shifts, while pseudo-labeling utilizes the data's inherent structure for enhanced learning, which is particularly beneficial when labeled data is scarce. Evaluated on the DRIVE and CHASE_DB1 datasets, which contain clinical fundus images, the proposed model achieves outstanding performance, with accuracy, sensitivity, specificity, and AUC values of 0.9792, 0.8640, 0.9901, and 0.9868 on DRIVE, and 0.9830, 0.9058, 0.9888, and 0.9950 on CHASE_DB1, respectively, outperforming current state-of-the-art vessel segmentation methods. The partitioning of datasets into training and testing sets ensures thorough validation, while extensive ablation studies with thorough sensitivity analysis of the model's parameters and different percentages of labeled data further validate its robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
剧院的饭桶完成签到,获得积分10
7秒前
xu完成签到 ,获得积分10
8秒前
9秒前
失眠的香蕉完成签到 ,获得积分10
17秒前
找文献的天才狗完成签到,获得积分10
22秒前
huangrui发布了新的文献求助10
30秒前
BINBIN完成签到 ,获得积分10
33秒前
yindi1991完成签到 ,获得积分10
40秒前
丘比特应助GEL采纳,获得10
54秒前
龙弟弟完成签到 ,获得积分10
54秒前
westernline完成签到,获得积分10
1分钟前
兴奋的若菱完成签到 ,获得积分10
1分钟前
坦率的从波完成签到 ,获得积分10
1分钟前
沉默采波完成签到 ,获得积分10
1分钟前
1分钟前
羽化成仙完成签到 ,获得积分10
1分钟前
儿学化学打断腿完成签到,获得积分10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
1分钟前
sougardenist完成签到,获得积分10
1分钟前
zhoahai完成签到 ,获得积分10
1分钟前
珍惜完成签到,获得积分10
1分钟前
生生完成签到 ,获得积分10
1分钟前
zjzjzjzjzj完成签到 ,获得积分10
1分钟前
蚂蚁踢大象完成签到 ,获得积分10
2分钟前
啊哈哈哈完成签到,获得积分10
2分钟前
ramsey33完成签到 ,获得积分10
2分钟前
辛勤的大帅完成签到,获得积分10
2分钟前
onw完成签到,获得积分10
2分钟前
平常的三问完成签到 ,获得积分10
2分钟前
pzh完成签到 ,获得积分10
2分钟前
啦啦啦啦完成签到 ,获得积分10
2分钟前
瘦瘦的枫叶完成签到 ,获得积分10
2分钟前
lingling完成签到 ,获得积分10
2分钟前
aa完成签到 ,获得积分10
2分钟前
橘子海完成签到 ,获得积分10
2分钟前
chi完成签到 ,获得积分10
2分钟前
优雅的平安完成签到 ,获得积分10
2分钟前
喔喔佳佳L完成签到 ,获得积分10
2分钟前
大白完成签到 ,获得积分10
2分钟前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集(1953—2003) 700
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811747
求助须知:如何正确求助?哪些是违规求助? 3355995
关于积分的说明 10379060
捐赠科研通 3072963
什么是DOI,文献DOI怎么找? 1688121
邀请新用户注册赠送积分活动 811850
科研通“疑难数据库(出版商)”最低求助积分说明 766877