Metal-Organic Frameworks: Advances in First-Principles Computational Studies on Catalysis, Adsorption, and Energy Storage

材料科学 吸附 金属有机骨架 生化工程 计算模型 纳米技术 计算机科学 系统工程 有机化学 人工智能 化学 工程类
作者
Junqi Peng,Yingna Zhao,Xiaoyu Wang,Xiongfeng Zeng,Jiansheng Wang,Suo-Xia Hou
出处
期刊:Materials today communications [Elsevier BV]
卷期号:40: 109780-109780 被引量:7
标识
DOI:10.1016/j.mtcomm.2024.109780
摘要

Metal-organic frameworks (MOFs) have exhibited tremendous potential in catalysis, gas storage, drug delivery, and sensing due to their high surface area, high porosity, and tunability. MOFs are constructed from metal ions or clusters connected by organic ligands, offering scientists extensive research possibilities owing to their diversity and complexity. However, the diversity of MOFs also presents challenges in stability and controllability, particularly concerning instability or structural changes under varying environmental conditions. Theoretical calculations, especially first-principles calculations and molecular dynamics simulations, have become crucial tools for MOF research. These methods can predict the structural stability, adsorption properties, and catalytic activity of MOFs, simulate experimental processes, and guide experimental design to optimize the structure and performance of MOFs. Nevertheless, first-principles calculations face challenges of high computational costs and lengthy computations when dealing with large-scale systems or complex processes. Additionally, the accuracy of the calculation results is influenced by the selection of exchange-correlation functionals and basis sets. With advancements in computational techniques, it is anticipated that more accurate and efficient computational models will emerge to address the challenges in MOF research. These advancements will further drive the applications of MOFs in various fields, promoting the development of materials science. This review summarizes the frontier research progress of MOFs and their practical applications combined with theoretical calculations, while also discussing the limitations of first-principles in MOF research. Future research directions include the development of more accurate and efficient computational models to address the challenges in MOF research, driven by the enhancement of computational capabilities and methodological improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意的妙海完成签到 ,获得积分10
1秒前
科研副本完成签到,获得积分10
2秒前
华仔应助春一又木采纳,获得10
4秒前
4秒前
美丽的冰棍完成签到,获得积分20
6秒前
小药丸完成签到,获得积分10
7秒前
bc举报veen求助涉嫌违规
8秒前
9秒前
10秒前
刘晚柠发布了新的文献求助10
10秒前
咕噜咕噜完成签到,获得积分20
11秒前
鲁丁丁完成签到,获得积分10
11秒前
13秒前
13秒前
xixiwa发布了新的文献求助10
14秒前
学术混子发布了新的文献求助10
14秒前
晾猫人发布了新的文献求助10
14秒前
15秒前
一沙发布了新的文献求助10
16秒前
可靠的电源完成签到,获得积分10
16秒前
答题不卡发布了新的文献求助10
19秒前
20秒前
orixero应助卡莉采纳,获得10
24秒前
迷路文博完成签到 ,获得积分10
24秒前
Rena完成签到,获得积分20
25秒前
30秒前
30秒前
可乐SAMA完成签到,获得积分10
31秒前
珂珂完成签到 ,获得积分10
33秒前
可乐SAMA发布了新的文献求助10
34秒前
kingwill举报迪克bin求助涉嫌违规
35秒前
36秒前
huhuhu发布了新的文献求助10
37秒前
陈民发布了新的文献求助10
38秒前
科研通AI5应助小Q采纳,获得10
39秒前
40秒前
leehhd完成签到,获得积分20
40秒前
拟好啊完成签到,获得积分20
42秒前
42秒前
177完成签到,获得积分10
42秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Images that translate 500
中国新能源电池回收利用产业发展报告(2024) 400
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842966
求助须知:如何正确求助?哪些是违规求助? 3385020
关于积分的说明 10538533
捐赠科研通 3105563
什么是DOI,文献DOI怎么找? 1710459
邀请新用户注册赠送积分活动 823636
科研通“疑难数据库(出版商)”最低求助积分说明 774170