Hybrid deep learning based prediction for water quality of plain watershed

计算机科学 机器学习 环境科学 滨海平原 分水岭 水质 水文学(农业) 地质学 生态学 生物 岩土工程
作者
K. H. Wang,Lei Liu,Xuechen Ben,Danjun Jin,Yao Zhu,Feier Wang
出处
期刊:Environmental Research [Elsevier]
卷期号:262: 119911-119911 被引量:13
标识
DOI:10.1016/j.envres.2024.119911
摘要

Establishing a highly reliable and accurate water quality prediction model is critical for effective water environment management. However, enhancing the performance of these predictive models continues to pose challenges, especially in the plain watershed with complex hydraulic conditions. This study aims to evaluate the efficacy of three traditional machine learning models versus three deep learning models in predicting the water quality of plain river networks and to develop a novel hybrid deep learning model to further improve prediction accuracy. The performance of the proposed model was assessed under various input feature sets and data temporal frequencies. The findings indicated that deep learning models outperformed traditional machine learning models in handling complex time series data. Long Short-Term Memory (LSTM) models improved the R2 by approximately 29% and lowered the Root Mean Square Error (RMSE) by about 48.6% on average. The hybrid Bayes-LSTM-GRU (Gated Recurrent Unit) model significantly enhanced prediction accuracy, reducing the average RMSE by 18.1% compared to the single LSTM model. Models trained on feature-selected datasets exhibited superior performance compared to those trained on original datasets. Higher temporal frequencies of input data generally provide more useful information. However, in datasets with numerous abrupt changes, increasing the temporal interval proves beneficial. Overall, the proposed hybrid deep learning model demonstrates an efficient and cost-effective method for improving water quality prediction performance, showing significant potential for application in managing water quality in plain watershed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li发布了新的文献求助10
刚刚
YH发布了新的文献求助10
1秒前
2秒前
ATOM发布了新的文献求助10
4秒前
JC发布了新的文献求助10
5秒前
典雅长颈鹿完成签到,获得积分10
5秒前
所所应助ff采纳,获得10
6秒前
8秒前
8秒前
10秒前
my完成签到,获得积分10
10秒前
情怀应助YH采纳,获得10
12秒前
mww发布了新的文献求助10
14秒前
归雁完成签到,获得积分10
16秒前
nian完成签到 ,获得积分10
18秒前
20秒前
11完成签到,获得积分10
20秒前
安详砖家发布了新的文献求助10
20秒前
21秒前
EMMACao完成签到,获得积分10
21秒前
xky200125完成签到 ,获得积分10
22秒前
超级板凳完成签到,获得积分10
23秒前
rationality完成签到,获得积分10
23秒前
jojo完成签到 ,获得积分10
24秒前
Jay发布了新的文献求助10
25秒前
25秒前
zyn发布了新的文献求助10
25秒前
传奇3应助ei采纳,获得10
28秒前
7分运气完成签到,获得积分10
28秒前
MARIO发布了新的文献求助10
30秒前
小呆鹿完成签到,获得积分10
30秒前
天真的白凡完成签到 ,获得积分10
32秒前
YG完成签到,获得积分10
32秒前
32秒前
33秒前
QiJiLuLu完成签到,获得积分10
34秒前
无花果应助ATOM采纳,获得10
34秒前
Werner完成签到 ,获得积分10
34秒前
34秒前
35秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339290
求助须知:如何正确求助?哪些是违规求助? 4476138
关于积分的说明 13930647
捐赠科研通 4371604
什么是DOI,文献DOI怎么找? 2401978
邀请新用户注册赠送积分活动 1394933
关于科研通互助平台的介绍 1366848