Development of the machine learning model that is highly validated and easily applicable to predict radiographic knee osteoarthritis progression

骨关节炎 沃马克 医学 物理疗法 射线照相术 算法 外科 数学 病理 替代医学
作者
Weon Do Lee,Hyuk‐S. Han,Du Hyun Ro,Yong Seuk Lee
出处
期刊:Journal of Orthopaedic Research [Wiley]
标识
DOI:10.1002/jor.25982
摘要

Abstract Many models using the aid of artificial intelligence have been recently proposed to predict the progression of knee osteoarthritis. However, previous models have not been properly validated with an external data set or have reported poor predictive performances. Therefore, the purpose of this study was to design a machine learning model for knee osteoarthritis progression, focusing on high validation quality and clinical applicability. A retrospective analysis was conducted on prospectively collected data, using the Osteoarthritis Initiative data set (5966 knees) for model development and the Multicenter Osteoarthritis Study data set (3392 knees) for validation. The analysis aimed to predict Kellgren–Lawrence grade (KLG) progression over 4–5 years in knees with initial KLG of 0, 1, or 2. Possible predictors included demographics, comorbidities, history of meniscectomy, gait speed, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores, and radiological findings. The Random Forest algorithm was employed for the predictive model development. Baseline KLG, contralateral knee osteoarthritis, lateral joint space narrowing (JSN) grade, BMI, medial JSN grade, and total WOMAC score were six features selected for the model in descending order of importance. Odds ratios of baseline KLG, contralateral knee osteoarthritis, and lateral JSN grade were 1.76, 2.59, and 4.74, respectively (all p < 0.001). The area‐under‐the‐curve of the ROC curve in the validation set was 0.76 with an accuracy of 0.68 and an F1‐score of 0.56. The progression of knee osteoarthritis in 4 ~ 5 years could be well‐predicted using easily available variables. This simple and validated model may aid surgeons in knee osteoarthritis patient management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
提莫蘑菇完成签到,获得积分10
刚刚
七小七完成签到 ,获得积分10
刚刚
liang完成签到 ,获得积分10
1秒前
chenlc971125完成签到 ,获得积分10
1秒前
疯狂的绝山完成签到 ,获得积分10
1秒前
可靠的书本完成签到,获得积分10
1秒前
栗子完成签到 ,获得积分10
2秒前
科研通AI6应助lixiao1912采纳,获得10
3秒前
明理的亦寒完成签到 ,获得积分10
3秒前
让我再眯一会儿完成签到 ,获得积分10
5秒前
整齐的忆彤完成签到,获得积分10
5秒前
宋江他大表哥完成签到,获得积分10
5秒前
7秒前
爆米花完成签到,获得积分10
7秒前
Nakjeong完成签到 ,获得积分10
8秒前
Sampson完成签到,获得积分10
10秒前
喵喵完成签到 ,获得积分10
11秒前
彼方完成签到,获得积分10
11秒前
传奇3应助隐形的语海采纳,获得10
12秒前
花花糖果完成签到 ,获得积分10
13秒前
犹豫的若完成签到,获得积分10
13秒前
滴滴滴完成签到,获得积分10
13秒前
热心的十二完成签到 ,获得积分10
13秒前
14秒前
coconut完成签到,获得积分10
14秒前
掠影完成签到,获得积分20
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
Virginkiller1984完成签到 ,获得积分10
17秒前
谦让汝燕完成签到,获得积分10
17秒前
嘟嘟雯完成签到 ,获得积分10
18秒前
尛森完成签到,获得积分10
19秒前
月军发布了新的文献求助10
19秒前
笨笨慕山完成签到,获得积分10
19秒前
xcwy完成签到,获得积分10
20秒前
peipei完成签到,获得积分10
20秒前
科研通AI6应助Flos采纳,获得10
21秒前
bclddmy完成签到,获得积分10
23秒前
maxthon完成签到,获得积分10
24秒前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555208
求助须知:如何正确求助?哪些是违规求助? 4639804
关于积分的说明 14656805
捐赠科研通 4581829
什么是DOI,文献DOI怎么找? 2512972
邀请新用户注册赠送积分活动 1487643
关于科研通互助平台的介绍 1458706