TGBNN: Training Algorithm of Binarized Neural Network With Ternary Gradients for MRAM-Based Computing-in-Memory Architecture

计算机科学 三元运算 人工神经网络 磁阻随机存取存储器 培训(气象学) 并行计算 计算科学 内存体系结构 计算机体系结构 算法 计算机工程 人工智能 随机存取存储器 计算机硬件 程序设计语言 气象学 物理
作者
Yuya Fujiwara,T. Kawahara
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 150962-150974 被引量:1
标识
DOI:10.1109/access.2024.3476417
摘要

To build Neural Networks (NNs) on edge devices, Binarized Neural Network (BNN) has been proposed on the software side, while Computing-in-Memory (CiM) architecture has been proposed on the hardware side. For use on CiM architecture-based BNN, Magnetic Random Access Memory (MRAM) has been attracting interest thanks to its low power consumption and fast write operation. In this study, we propose a new BNN training algorithm utilizing ternarized gradients (TGBNN) for MRAM-based CiM architecture to enable both training BNN and inference on edge devices. TGBNN has only ternary gradients, binary weights, binary activations, binary inputs in both training and inference phases. In other words, real-valued weights and real-valued gradients, which are necessary on conventional BNNs in the training phase, never appear on our BNN. TGBNN uses three key techniques: ternarized gradients, improved straight through estimator, and stochastic weights update. In addition, to build TGBNN on edge devices, we propose a new MRAM-based CiM architecture. Our MRAM array consists of an MRAM cell-based XNOR gate utilizing Voltage Controlled Magnetic Anisotropy (VCMA) and MRAM cell-based stochastic updating utilizing Spin Orbit Torque (SOT). Owning to our MRAM-based CiM architecture, we can halve the scale of the Multiply-and-Accumulate (MAC) operation circuit in comparison with the conventional method. Lastly, we evaluated TGBNN on our MRAM utilizing the MNIST handwriting dataset. The result showed that the accuracy of TGBNN was only 0.92 % lower than that of regular BNN has the same structure, and the training of TGBNN can converge faster than it of regular BNN. In addition, we found 88.28 % accuracy with ECOC-based learning TGBNN. Therefore, we can build a BNN on the edge side in both inference and training phases owning to TGBNN on our MRAM-based CiM architecture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
唠叨的逍遥完成签到,获得积分10
刚刚
Sy0v0关注了科研通微信公众号
1秒前
汐颜完成签到,获得积分10
1秒前
1秒前
汀汀发布了新的文献求助10
1秒前
福卡完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
醉熏的以云完成签到,获得积分10
3秒前
超帅的灭龙完成签到,获得积分10
3秒前
zoe完成签到,获得积分20
3秒前
花海发布了新的文献求助10
4秒前
子夜发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
freedom发布了新的文献求助10
5秒前
5秒前
孙子豪发布了新的文献求助10
6秒前
Mrz发布了新的文献求助10
6秒前
6秒前
dynamoo发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
CITY111119发布了新的文献求助10
8秒前
huoguoyv发布了新的文献求助10
8秒前
易琚发布了新的文献求助10
9秒前
隐形曼青应助个性梦蕊采纳,获得10
9秒前
10秒前
可爱春天发布了新的文献求助10
10秒前
10秒前
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620188
求助须知:如何正确求助?哪些是违规求助? 4704708
关于积分的说明 14929099
捐赠科研通 4761278
什么是DOI,文献DOI怎么找? 2550838
邀请新用户注册赠送积分活动 1513615
关于科研通互助平台的介绍 1474523