Bi-objective bus scheduling optimization with passenger perception in mind

渡线 计算机科学 调度(生产过程) 遗传算法 数学优化 运筹学 工程类 数学 人工智能 机器学习
作者
Shuai Liu,Lin Liu,Dongmei Pei,Jue Wang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:1
标识
DOI:10.1038/s41598-023-32997-4
摘要

With the development of big traffic data, bus schedules should be changed from the traditional "empirical" rough scheduling to "responsive" accurate scheduling to meet the travel needs of passengers. Based on passenger flow distribution, considering passengers' feelings of congestion and waiting time at the station, we establish a Dual-Cost Bus Scheduling Optimization Model (Dual-CBSOM) with the optimization objectives of minimizing bus operation and passenger travel costs. Improving the classical Genetic Algorithm (GA) by adaptively determining the crossover probability and mutation probability of the algorithm. We use an Adaptive Double Probability Genetic Algorithm (A_DPGA) to solve the Dual-CBSOM. Taking Qingdao city as an example for optimization, the constructed A_DPGA is compared with the classical GA and Adaptive Genetic Algorithm (AGA). By solving the arithmetic example, we get the optimal solution that can reduce the overall objective function value by 2.3%, improve the bus operation cost by 4.0%, and reduce the passenger travel cost by 6.3%. The conclusions show that the Dual_CBSOM built can better meet the passenger travel demand, improve passenger travel satisfaction, and reduce the passenger travel cost and waiting for cost. It is demonstrated that the A_DPGA built in this research has faster convergence and better optimization results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
冷酷以太完成签到,获得积分20
1秒前
许甜甜鸭应助淡淡冬瓜采纳,获得20
1秒前
科研八戒发布了新的文献求助10
2秒前
虚幻的翎完成签到,获得积分10
2秒前
犹豫灯泡发布了新的文献求助10
2秒前
魔幻若血发布了新的文献求助10
2秒前
3秒前
xxx发布了新的文献求助10
3秒前
4秒前
BakedMax发布了新的文献求助10
5秒前
鲤鱼星月发布了新的文献求助10
5秒前
hansa完成签到,获得积分0
5秒前
xiuwen完成签到,获得积分10
5秒前
李爱国应助珂珂采纳,获得10
6秒前
帕金森完成签到,获得积分10
6秒前
深情安青应助虚幻的翎采纳,获得10
7秒前
8秒前
不会放电的皮卡丘应助keke采纳,获得10
8秒前
威化完成签到,获得积分10
8秒前
9秒前
llllh发布了新的文献求助10
9秒前
犹豫灯泡完成签到,获得积分10
9秒前
机灵的觅山完成签到,获得积分20
10秒前
11秒前
leekk完成签到,获得积分10
11秒前
TYMX完成签到,获得积分10
12秒前
12秒前
12秒前
若兰发布了新的文献求助10
13秒前
13秒前
111完成签到,获得积分20
14秒前
14秒前
打打应助阿迪采纳,获得10
14秒前
陈木木完成签到,获得积分10
15秒前
情怀应助华姝采纳,获得10
15秒前
科研通AI5应助天羽世晴采纳,获得10
16秒前
大方念云发布了新的文献求助20
16秒前
wswddtd发布了新的文献求助10
17秒前
深情安青应助Calvin采纳,获得10
17秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Resonance: A Sociology of Our Relationship to the World 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828264
求助须知:如何正确求助?哪些是违规求助? 3370626
关于积分的说明 10464223
捐赠科研通 3090515
什么是DOI,文献DOI怎么找? 1700455
邀请新用户注册赠送积分活动 817837
科研通“疑难数据库(出版商)”最低求助积分说明 770506