An EEMD-SVD method based on gray wolf optimization algorithm for lidar signal noise reduction

降噪 希尔伯特-黄变换 算法 计算机科学 噪音(视频) 高斯噪声 奇异值分解 加性高斯白噪声 信号(编程语言) 白噪声 小波 人工智能 数学 电信 图像(数学) 程序设计语言
作者
Shun Li,Jiandong Mao,Zhiyuan Li
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:44 (17): 5448-5472 被引量:11
标识
DOI:10.1080/01431161.2023.2249597
摘要

ABSTRACTAtmospheric lidar is susceptible to light attenuation, sky background light and detector dark current during detection, which results in a lot of noise in the lidar return signal. In order to improve the SNR and extract useful signals, this paper proposes a new joint denoising method EEMD-GWO-SVD, which includes empirical mode decomposition (EEMD), grey wolf optimization (GWO) and singular value decomposition (SVD). Firstly, the grey wolf optimization algorithm was used to optimize two parameters of EEMD algorithm according to moderate values: the standard deviation Nstd of adding Gaussian white noise to the signal and the number NE of adding Gaussian white noise. Secondly, the mode components obtained by EEMD-GWO decomposition are screened and reconstructed according to the correlation coefficient method. Finally, the SVD algorithm with strong noise reduction ability was used to further remove the noise in the reconstructed signal, and the lidar return signal with high SNR was obtained. In order to verify the effectiveness of the proposed method, the proposed method was compared with empirical mode decomposition (EMD), complete ensemble empirical modal decomposition (CEEMDAN), wavelet packet decomposition and EEMD-SVD-lifting wavelet transform (EEMD-SVD-LWT). The results show that the noise reduction effect of the proposed method was better than that of the other four methods. This method can eliminate the complex noise in the lidar return signal while retaining all the details of the signal. In fact, the denoised signal is not distorted, the waveform is smooth, the far-field noise interference can be suppressed and the denoised signal is closer to the real signal with higher accuracy, which indicates the feasibility and practicability of the proposed method.KEYWORDS: Lidargrey wolf optimization algorithmsingular value decompositionempirical modal decompositionnoise reduction Disclosure statementNo potential conflict of interest was reported by the author(s).Data Availability statementThe relevant data used to support the findings of this study are available from the corresponding author upon request.Additional informationFundingThe work was supported by the National Natural Science Foundation of China [42265009]; Natural Science Foundation of Ningxia Province [2021AAC02021]; Ningxia First-Class Discipline and Scientific Research Projects (Electronic Science and Technology) [NXYLXK2017A07]; Innovation Team of Lidar Atmosphere Remote Sensing of Ningxia Province [no]; Plan for Leading Talents of the State Ethnic Affairs Commission of the People's Republic of China [no]; the special funds for basic scientific research business expenses of central universities of North Minzu University [FWNX20]; the high-level talent selection and training plan of North Minzu University [no].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HY完成签到,获得积分20
刚刚
1秒前
1秒前
2秒前
七月流火应助爱喝冰咖啡采纳,获得80
2秒前
我要瘦发布了新的文献求助10
2秒前
30发布了新的文献求助10
2秒前
他们叫我小伟完成签到 ,获得积分10
3秒前
NSS完成签到,获得积分0
3秒前
寒江雪发布了新的文献求助10
3秒前
realrrr完成签到 ,获得积分10
3秒前
YanuoK发布了新的文献求助10
4秒前
4秒前
2Rui发布了新的文献求助10
4秒前
4秒前
NexusExplorer应助malenia采纳,获得10
4秒前
鱼饼bb完成签到,获得积分10
5秒前
CipherSage应助HY采纳,获得30
5秒前
6秒前
yukiycc完成签到 ,获得积分10
7秒前
7秒前
lJH发布了新的文献求助10
7秒前
Akim应助研友_V8RmmZ采纳,获得10
7秒前
敏感的鼠标完成签到 ,获得积分10
8秒前
preciado完成签到 ,获得积分10
8秒前
8秒前
mostspecial完成签到,获得积分10
9秒前
9秒前
9秒前
wudidafei完成签到 ,获得积分10
9秒前
SMIRTGIRL发布了新的文献求助10
10秒前
shinian完成签到 ,获得积分10
10秒前
LIULIYUAN发布了新的文献求助10
10秒前
HJJHJH发布了新的文献求助10
11秒前
11秒前
阳光男孩完成签到 ,获得积分20
11秒前
biubiu0417发布了新的文献求助10
12秒前
科研通AI2S应助楼下太吵了采纳,获得10
13秒前
liherong完成签到,获得积分10
13秒前
banana发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069021
求助须知:如何正确求助?哪些是违规求助? 4290502
关于积分的说明 13367811
捐赠科研通 4110451
什么是DOI,文献DOI怎么找? 2250993
邀请新用户注册赠送积分活动 1256182
关于科研通互助平台的介绍 1188650