AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory

工厂 农业工程 持续性 能源消耗 生产(经济) 可持续农业 杠杆(统计) 资源效率 环境经济学 工程类 计算机科学 生态学 人工智能 电气工程 宏观经济学 农学 经济 生物
作者
Guoqing Hu,Fengqi You
出处
期刊:Applied Energy [Elsevier BV]
卷期号:356: 122334-122334 被引量:13
标识
DOI:10.1016/j.apenergy.2023.122334
摘要

The advancement of controlled-environment agriculture, particularly in plant factories, offers an innovative solution to address the rising demand for food due to global population growth and urbanization. These controlled environments provide consistent and predictable crop yields, irrespective of external weather conditions, and can be tailored to achieve optimal plant growth. However, the intensive energy requirements of these systems have raised sustainability concerns. In plant factories, which provide regulated environments for sustainable food production, it remains essential to minimize energy consumption while maintaining operational efficiency. This study introduces a novel cyber-physical-biological system (CPBS) for managing energy and crop production in plant factories. The CPBS accurately captures plant biological dynamics, such as temperature, humidity, lighting, and CO2 levels, optimizes control variables, and predicts crop growth within these controlled environments. To achieve these outcomes, we leverage physics-informed deep learning (PIDL) techniques to develop high-fidelity and computationally efficient digital twins for the plant factory's internal microclimate and crop states. PIDL enables us to capture complex relationships between environmental factors and crop growth, thereby improving accuracy and decision-making in control. Using the CPBS, we optimize energy usage and resource expenses to ensure sustainable crop production rates under different daylight scenarios in the plant factory. Simulation results from a full growth cycle demonstrate that our proposed CPBS, compared to a certainty equivalent model predictive control (MPC), reduces violation cases by 84.53%. Additionally, it achieves a reduction of 13.41% and 13.04% in energy and resource usage, respectively, compared to a traditional robust MPC that considers a box-shaped uncertainty set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱华彪完成签到,获得积分10
3秒前
RitaJ发布了新的文献求助10
3秒前
5秒前
5秒前
万能图书馆应助拉门次采纳,获得10
6秒前
妙海完成签到,获得积分10
6秒前
QXS完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
平常寄柔发布了新的文献求助10
9秒前
花花123发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
Jeremy完成签到,获得积分10
12秒前
水雾发布了新的文献求助10
12秒前
lyq123456发布了新的文献求助10
13秒前
科研小白发布了新的文献求助30
14秒前
馆长应助欣喜的初柔采纳,获得30
14秒前
平常寄柔完成签到,获得积分20
15秒前
XS_QI完成签到 ,获得积分10
16秒前
17秒前
汤姆完成签到,获得积分10
17秒前
Xumeiling完成签到 ,获得积分10
18秒前
雷雷完成签到,获得积分10
18秒前
18秒前
小逸发布了新的文献求助10
18秒前
Leo完成签到,获得积分10
18秒前
20秒前
20秒前
Nix发布了新的文献求助10
20秒前
DueR发布了新的文献求助10
21秒前
21秒前
胡思乱想完成签到,获得积分10
22秒前
罗欣宇完成签到,获得积分10
22秒前
24秒前
叶叶叶完成签到,获得积分10
24秒前
27秒前
lyq123456完成签到,获得积分10
27秒前
罗欣宇发布了新的文献求助10
27秒前
水雾完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4698752
求助须知:如何正确求助?哪些是违规求助? 4067820
关于积分的说明 12576514
捐赠科研通 3767364
什么是DOI,文献DOI怎么找? 2080626
邀请新用户注册赠送积分活动 1108593
科研通“疑难数据库(出版商)”最低求助积分说明 986889