Tuning OER Electrocatalysts toward LOM Pathway through the Lens of Multi-Descriptor Feature Selection by Artificial Intelligence-Based Approach

析氧 人工智能 计算机科学 生化工程 材料科学 生物系统 纳米技术 化学 工程类 电化学 电极 生物 物理化学
作者
Haruna Adamu,Sani I. Abba,Paul Betiang Anyin,Yusuf Sani,Zain H. Yamani,Mohammad Qamar
出处
期刊:ACS materials letters [American Chemical Society]
卷期号:5 (2): 299-320 被引量:21
标识
DOI:10.1021/acsmaterialslett.2c00734
摘要

From the thermodynamic and kinetic viewpoints, the oxygen evolution reaction (OER) is central to the production of hydrogen through electrocatalytic water splitting process. As a result, extensive research is carried out with an aim to develop (preferably low cost) electrocatalysts for efficient OER reaction. Two main mechanisms, the lattice oxygen mediated mechanism (LOM) and the adsorbate evolution mechanism (AEM), are proposed for the OER process, but the former seems to be favored as the latter is surrounded by a number of discrepancies. The LOM is based on the oxidation and reduction chemistry of lattice oxygen anions. Both from fundamental and application perspectives, identification and selection of crucial electronic and structural features to rationally tune the LOM for OER process and determine the rate of the OER reaction are essential but remain a challenge. As yet, this has largely been attempted by trial and error (synthesis and performance evaluation) approaches and, hence, has been tied up by tediousness and inefficiency. Considering the availability of large chemical space and huge probabilities in fine-tuning of electronic and structural attributes, the use of artificial intelligence (AI) can be efficacious. To predict promising material features that enable rational design of OER electrocatalysts, electrocatalytic performance maps have been developed based on reactivity multiple descriptors. The reactivity multiple descriptors are numerous and are classified into several families. Therefore, modern materials informatics technique is urgently required to enable large-scale data mining to rapidly screen and select the best physical features from multiple descriptors for a rational design of LOM-induced OER electrocatalysts. In this context, feature selection by artificial intelligence-based approach can be a solution to such challenge. Yet to the best of our knowledge, no attempt has been made before to tune electrocatalysts for the OER through LOM reaction mechanism following feature selection by artificial intelligence-based approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙燕应助刘先生采纳,获得10
2秒前
帆布鞋发布了新的文献求助10
4秒前
Rondab应助GS_lly采纳,获得30
4秒前
bkagyin应助Fighter采纳,获得10
5秒前
6秒前
科研通AI2S应助小雨采纳,获得10
8秒前
薇薇安完成签到,获得积分10
8秒前
瘦瘦的依玉完成签到,获得积分10
9秒前
山城小丸发布了新的文献求助10
10秒前
mrjohn完成签到,获得积分10
11秒前
allzzwell完成签到 ,获得积分10
11秒前
11秒前
彭于晏应助科研通管家采纳,获得10
12秒前
dong应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
dong应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
12秒前
15秒前
15秒前
Fighter发布了新的文献求助10
16秒前
DENANANA完成签到 ,获得积分20
16秒前
Zjx发布了新的文献求助10
19秒前
GGbound完成签到,获得积分10
20秒前
mlll发布了新的文献求助10
20秒前
23秒前
26秒前
希望天下0贩的0应助mlll采纳,获得10
27秒前
GGbound发布了新的文献求助10
27秒前
28秒前
28秒前
syp完成签到,获得积分10
31秒前
电致阿光发布了新的文献求助10
31秒前
32秒前
lidongxing发布了新的文献求助10
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993151
求助须知:如何正确求助?哪些是违规求助? 3534027
关于积分的说明 11264447
捐赠科研通 3273745
什么是DOI,文献DOI怎么找? 1806151
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652