清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Text-Based Depression Prediction on Social Media Using Machine Learning: Systematic Review and Meta-Analysis

社会化媒体 适度 机器学习 科克伦图书馆 荟萃分析 人工智能 梅德林 人口 随机森林 萧条(经济学) 斯科普斯 随机效应模型 心理学 计算机科学 自然语言处理 医学 万维网 宏观经济学 法学 经济 内科学 环境卫生 政治学
作者
Doreen Phiri,Frank Makowa,Vivi Leona Amelia,Yohane Vincent Abero Phiri,Lindelwa Portia Dlamini,Min‐Huey Chung
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e59002-e59002
标识
DOI:10.2196/59002
摘要

Background Depression affects more than 350 million people globally. Traditional diagnostic methods have limitations. Analyzing textual data from social media provides new insights into predicting depression using machine learning. However, there is a lack of comprehensive reviews in this area, which necessitates further research. Objective This review aims to assess the effectiveness of user-generated social media texts in predicting depression and evaluate the influence of demographic, language, social media activity, and temporal features on predicting depression on social media texts through machine learning. Methods We searched studies from 11 databases (CINHAL [through EBSCOhost], PubMed, Scopus, Ovid MEDLINE, Embase, PubPsych, Cochrane Library, Web of Science, ProQuest, IEEE Explore, and ACM digital library) from January 2008 to August 2023. We included studies that used social media texts, machine learning, and reported area under the curve, Pearson r, and specificity and sensitivity (or data used for their calculation) to predict depression. Protocol papers and studies not written in English were excluded. We extracted study characteristics, population characteristics, outcome measures, and prediction factors from each study. A random effects model was used to extract the effect sizes with 95% CIs. Study heterogeneity was evaluated using forest plots and P values in the Cochran Q test. Moderator analysis was performed to identify the sources of heterogeneity. Results A total of 36 studies were included. We observed a significant overall correlation between social media texts and depression, with a large effect size (r=0.630, 95% CI 0.565-0.686). We noted the same correlation and large effect size for demographic (largest effect size; r=0.642, 95% CI 0.489-0.757), social media activity (r=0.552, 95% CI 0.418-0.663), language (r=0.545, 95% CI 0.441-0.649), and temporal features (r=0.531, 95% CI 0.320-0.693). The social media platform type (public or private; P<.001), machine learning approach (shallow or deep; P=.048), and use of outcome measures (yes or no; P<.001) were significant moderators. Sensitivity analysis revealed no change in the results, indicating result stability. The Begg-Mazumdar rank correlation (Kendall τb=0.22063; P=.058) and the Egger test (2-tailed t34=1.28696; P=.207) confirmed the absence of publication bias. Conclusions Social media textual content can be a useful tool for predicting depression. Demographics, language, social media activity, and temporal features should be considered to maximize the accuracy of depression prediction models. Additionally, the effects of social media platform type, machine learning approach, and use of outcome measures in depression prediction models need attention. Analyzing social media texts for depression prediction is challenging, and findings may not apply to a broader population. Nevertheless, our findings offer valuable insights for future research. Trial Registration PROSPERO CRD42023427707; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023427707
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
翁雁丝完成签到 ,获得积分10
4秒前
周钰波完成签到,获得积分10
13秒前
28秒前
科研通AI5应助nojego采纳,获得10
39秒前
小乙猪完成签到 ,获得积分0
45秒前
会思考的狐狸完成签到 ,获得积分10
53秒前
lod完成签到,获得积分10
53秒前
53秒前
znchick发布了新的文献求助10
1分钟前
神勇的天问完成签到 ,获得积分10
1分钟前
1分钟前
怡然白竹完成签到 ,获得积分10
1分钟前
nojego发布了新的文献求助10
1分钟前
星辰完成签到 ,获得积分10
2分钟前
zhdjj完成签到 ,获得积分10
2分钟前
贰鸟完成签到,获得积分0
2分钟前
牛奶面包完成签到 ,获得积分10
2分钟前
jhlz5879完成签到 ,获得积分10
3分钟前
聪明的云完成签到 ,获得积分10
3分钟前
大雁完成签到 ,获得积分10
3分钟前
梓树完成签到,获得积分10
3分钟前
大猪完成签到 ,获得积分10
3分钟前
wanci应助jun采纳,获得10
3分钟前
浚稚完成签到 ,获得积分10
3分钟前
4分钟前
满意的伊发布了新的文献求助10
4分钟前
饱满语风完成签到 ,获得积分10
4分钟前
西溪完成签到,获得积分0
4分钟前
微笑的巧蕊完成签到 ,获得积分10
4分钟前
wanguangcai完成签到,获得积分10
5分钟前
努力搬砖努力干完成签到,获得积分10
5分钟前
5分钟前
亚亚完成签到 ,获得积分10
5分钟前
科研通AI5应助nojego采纳,获得10
6分钟前
研友_ndDGVn完成签到,获得积分10
6分钟前
Owen应助ybwei2008_163采纳,获得10
6分钟前
个性归尘应助artnon采纳,获得10
6分钟前
Jasper应助ybwei2008_163采纳,获得10
6分钟前
缺粥完成签到 ,获得积分10
6分钟前
7分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825033
求助须知:如何正确求助?哪些是违规求助? 3367346
关于积分的说明 10445264
捐赠科研通 3086738
什么是DOI,文献DOI怎么找? 1698222
邀请新用户注册赠送积分活动 816657
科研通“疑难数据库(出版商)”最低求助积分说明 769907