Text-Based Depression Prediction on Social Media Using Machine Learning: Systematic Review and Meta-Analysis

社会化媒体 适度 机器学习 科克伦图书馆 荟萃分析 人工智能 梅德林 人口 随机森林 萧条(经济学) 斯科普斯 随机效应模型 心理学 计算机科学 自然语言处理 医学 万维网 宏观经济学 法学 经济 内科学 环境卫生 政治学
作者
Doreen Phiri,Frank Makowa,Vivi Leona Amelia,Yohane Vincent Abero Phiri,Lindelwa Portia Dlamini,Min‐Huey Chung
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e59002-e59002
标识
DOI:10.2196/59002
摘要

Background Depression affects more than 350 million people globally. Traditional diagnostic methods have limitations. Analyzing textual data from social media provides new insights into predicting depression using machine learning. However, there is a lack of comprehensive reviews in this area, which necessitates further research. Objective This review aims to assess the effectiveness of user-generated social media texts in predicting depression and evaluate the influence of demographic, language, social media activity, and temporal features on predicting depression on social media texts through machine learning. Methods We searched studies from 11 databases (CINHAL [through EBSCOhost], PubMed, Scopus, Ovid MEDLINE, Embase, PubPsych, Cochrane Library, Web of Science, ProQuest, IEEE Explore, and ACM digital library) from January 2008 to August 2023. We included studies that used social media texts, machine learning, and reported area under the curve, Pearson r, and specificity and sensitivity (or data used for their calculation) to predict depression. Protocol papers and studies not written in English were excluded. We extracted study characteristics, population characteristics, outcome measures, and prediction factors from each study. A random effects model was used to extract the effect sizes with 95% CIs. Study heterogeneity was evaluated using forest plots and P values in the Cochran Q test. Moderator analysis was performed to identify the sources of heterogeneity. Results A total of 36 studies were included. We observed a significant overall correlation between social media texts and depression, with a large effect size (r=0.630, 95% CI 0.565-0.686). We noted the same correlation and large effect size for demographic (largest effect size; r=0.642, 95% CI 0.489-0.757), social media activity (r=0.552, 95% CI 0.418-0.663), language (r=0.545, 95% CI 0.441-0.649), and temporal features (r=0.531, 95% CI 0.320-0.693). The social media platform type (public or private; P<.001), machine learning approach (shallow or deep; P=.048), and use of outcome measures (yes or no; P<.001) were significant moderators. Sensitivity analysis revealed no change in the results, indicating result stability. The Begg-Mazumdar rank correlation (Kendall τb=0.22063; P=.058) and the Egger test (2-tailed t34=1.28696; P=.207) confirmed the absence of publication bias. Conclusions Social media textual content can be a useful tool for predicting depression. Demographics, language, social media activity, and temporal features should be considered to maximize the accuracy of depression prediction models. Additionally, the effects of social media platform type, machine learning approach, and use of outcome measures in depression prediction models need attention. Analyzing social media texts for depression prediction is challenging, and findings may not apply to a broader population. Nevertheless, our findings offer valuable insights for future research. Trial Registration PROSPERO CRD42023427707; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023427707
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
终梦应助林白采纳,获得60
刚刚
刚刚
冷傲迎梦完成签到,获得积分10
1秒前
Akim应助科研狗采纳,获得10
1秒前
2秒前
感叹号完成签到,获得积分10
3秒前
刘书鹏完成签到,获得积分10
3秒前
lww关注了科研通微信公众号
3秒前
小李发布了新的文献求助10
3秒前
12345656656发布了新的文献求助10
3秒前
4秒前
冷傲迎梦发布了新的文献求助10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
迷你的葵阴完成签到,获得积分20
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
且慢应助科研通管家采纳,获得20
5秒前
彩色的听兰完成签到 ,获得积分10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
汉堡肉应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
5秒前
wanci应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
晞晞完成签到,获得积分20
6秒前
Vincey完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
77seven完成签到,获得积分10
7秒前
8秒前
8秒前
务实寄松发布了新的文献求助30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481783
求助须知:如何正确求助?哪些是违规求助? 4582732
关于积分的说明 14386753
捐赠科研通 4511532
什么是DOI,文献DOI怎么找? 2472396
邀请新用户注册赠送积分活动 1458660
关于科研通互助平台的介绍 1432181