Deep learning-based radiomics and machine learning for prognostic assessment in IDH-wildtype glioblastoma after maximal safe surgical resection: a multicenter study

医学 无线电技术 胶质母细胞瘤 比例危险模型 列线图 队列 危险系数 Lasso(编程语言) 一致性 磁共振成像 内科学 肿瘤科 多元分析 文本挖掘 放射科 置信区间 癌症研究 数据挖掘 计算机科学 万维网
作者
Jianpeng Liu,Shufan Jiang,Yanfei Wu,Ruoyao Zou,Yifang Bao,Na Wang,Jiaqi Tu,Ji Xiong,Ying Liu,Yuxin Li
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:1
标识
DOI:10.1097/js9.0000000000002488
摘要

Background: Glioblastoma (GBM) is a highly aggressive brain tumor with poor prognosis. This study aimed to construct and validate a radiomics-based machine learning model for predicting overall survival (OS) in IDH-wildtype GBM after maximal safe surgical resection using magnetic resonance imaging. Methods: A total of 582 patients were retrospectively enrolled, comprising 301 in the training cohort, 128 in the internal validation cohort, and 153 in the external validation cohort. Volumes of interest (VOIs) from contrast-enhanced T1-weighted imaging (CE-T1WI) were segmented into three regions: contrast-enhancing tumor, necrotic non-enhancing core, and peritumoral edema using an ResNet-based segmentation network. A total of 4,227 radiomic features were extracted and filtered using LASSO-Cox regression to identify signatures. The prognostic model was constructed using the Mime prediction framework, categorizing patients into high- and low-risk groups based on the median OS. Model performance was assessed using the concordance index (CI) and Kaplan-Meier survival analysis. Independent prognostic factors were identified through multivariable Cox regression analysis, and a nomogram was developed for individualized risk assessment. Results: The Step Cox [backward] + RSF model achieved CIs of 0.89, 0.81, and 0.76 in the training, internal and external validation cohorts. Log-rank tests demonstrated significant survival differences between high- and low-risk groups across all cohorts ( P < 0.05). Multivariate Cox analysis identified age (HR: 1.022; 95% CI: 0.979, 1.009, P < 0.05), KPS score (HR: 0.970, 95% CI: 0.960, 0.978, P < 0.05), rad-scores of the necrotic non-enhancing core (HR: 8.164; 95% CI: 2.439, 27.331, P < 0.05), and peritumoral edema (HR: 3.748; 95% CI: 1.212, 11.594, P < 0.05) as independent predictors of OS. A nomogram integrating these predictors provided individualized risk assessment. Conclusion: This deep learning segmentation–based radiomics model demonstrated robust performance in predicting OS in GBM after maximal safe surgical resection. By incorporating radiomic signatures and advanced machine learning algorithms, it offers a non-invasive tool for personalized prognostic assessment and supports clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Wangxiaoyan完成签到,获得积分10
刚刚
刚刚
1秒前
扶苏发布了新的文献求助10
1秒前
3秒前
3秒前
Crest完成签到,获得积分10
4秒前
4秒前
WHP关注了科研通微信公众号
4秒前
4秒前
4秒前
正在获取昵称中...完成签到,获得积分10
5秒前
6秒前
善学以致用应助white采纳,获得10
6秒前
wangnankai发布了新的文献求助10
7秒前
Orange应助猪猪hero采纳,获得10
7秒前
瑞仔发布了新的文献求助10
7秒前
852应助遇见馅儿饼采纳,获得10
7秒前
sunny850发布了新的文献求助10
7秒前
Cj完成签到,获得积分10
9秒前
9秒前
10秒前
材料生发布了新的文献求助10
11秒前
ww发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
Wangxiaoyan发布了新的文献求助10
14秒前
alhn发布了新的文献求助10
15秒前
不安青牛应助虚心函采纳,获得10
15秒前
猪猪hero发布了新的文献求助30
16秒前
16秒前
自觉怜雪完成签到,获得积分10
17秒前
aa完成签到,获得积分10
17秒前
17秒前
18秒前
小霜降发布了新的文献求助10
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4623273
求助须知:如何正确求助?哪些是违规求助? 4023185
关于积分的说明 12454236
捐赠科研通 3707603
什么是DOI,文献DOI怎么找? 2044919
邀请新用户注册赠送积分活动 1076995
科研通“疑难数据库(出版商)”最低求助积分说明 959739