Developing a prognostic risk model based on circulating tumor cell genes to predict prognosis and provide potential therapeutic strategies in colorectal cancer

结直肠癌 肿瘤科 医学 内科学 基因 循环肿瘤细胞 癌症 癌症研究 生物 转移 遗传学
作者
Yupeng Zheng,Mian Yang,Hangjin Yi,Tao Peng,Jiaze Sun,Jiazi Yu
出处
期刊:Translational cancer research [AME Publishing Company]
卷期号:14 (5): 3096-3112
标识
DOI:10.21037/tcr-2024-2268
摘要

Colorectal cancer (CRC) is a major cause of cancer-related deaths worldwide. Understanding the genetic and molecular alterations in CRC can improve patient outcomes. Circulating tumor cells (CTCs) are crucial in cancer metastasis and progression. Analyzing the differentially expressed genes (DEGs) between CTCs and CRC may provide us with new therapeutic strategies. Therefore, this study aims to analyze these DEGs to construct a prognostic risk model that predicts the outcomes of CRC patients and guides clinical treatment. We analyzed The Cancer Genome Atlas (TCGA) database to identify 1,727 DEGs between CRC and normal samples, and GSE82198 data to find 3,564 DEGs between CTCs and primary CRC samples. Using enrichment analysis, least absolute shrinkage and selection operator (LASSO) regression, and stepwise Cox regression, we derived eight model genes to construct a prognostic risk model. Various algorithms were employed in the immune microenvironment analysis. Integrating clinical factors with risk grouping, we developed a nomogram. We assessed chemotherapy sensitivity and epithelial-mesenchymal transition (EMT) scores in high-/low-risk groups and explored model gene expression at the single-cell level. We constructed a prognostic risk model for CRC based on eight DEGs of CTCs. The model effectively predicted treatment outcomes and correlated closely with actual prognosis. Through immune microenvironment analysis, we revealed differences in immune cell infiltration and checkpoint gene expression among different risk groups. Moreover, patients in the high-risk group showed higher sensitivity to chemotherapy drugs compared to those in the low-risk group. The prognosis model based on CTCs' DEGs can effectively predict patient outcomes, facilitating precision treatment for patients. This model holds significant guiding implications for immunotherapy and chemotherapy in CRC, offering potential strategies for the clinical treatment of CRC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝桉发布了新的文献求助10
刚刚
顾矜应助Kannan采纳,获得10
刚刚
郑建辉发布了新的文献求助10
2秒前
芭娜55完成签到 ,获得积分10
2秒前
fugdu完成签到,获得积分10
2秒前
456完成签到,获得积分20
2秒前
学术zha发布了新的文献求助10
4秒前
ccbk2062完成签到,获得积分10
4秒前
天天快乐应助Julo采纳,获得10
6秒前
周周南完成签到 ,获得积分10
6秒前
9秒前
11秒前
赘婿应助萤火采纳,获得10
11秒前
duhdhd完成签到,获得积分20
14秒前
15秒前
Daisy发布了新的文献求助10
15秒前
小二郎应助莫非采纳,获得10
15秒前
小蘑菇发布了新的文献求助10
16秒前
duhdhd发布了新的文献求助10
16秒前
jianghs完成签到,获得积分10
16秒前
寇婧怡完成签到 ,获得积分10
18秒前
19秒前
Yin完成签到,获得积分10
19秒前
思源应助Leoniko采纳,获得10
19秒前
19秒前
学术zha完成签到,获得积分10
20秒前
辰逸发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
YOLO完成签到 ,获得积分10
23秒前
111发布了新的文献求助10
23秒前
小蘑菇完成签到,获得积分10
24秒前
香蕉觅云应助荔枝采纳,获得10
24秒前
汤汤完成签到,获得积分10
24秒前
hanatae完成签到,获得积分10
25秒前
mmddlj完成签到 ,获得积分10
25秒前
萤火发布了新的文献求助10
25秒前
研友_VZG7GZ应助何何何采纳,获得30
25秒前
碧蓝的尔蓝完成签到 ,获得积分10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3930710
求助须知:如何正确求助?哪些是违规求助? 3475497
关于积分的说明 10987462
捐赠科研通 3205654
什么是DOI,文献DOI怎么找? 1771592
邀请新用户注册赠送积分活动 859127
科研通“疑难数据库(出版商)”最低求助积分说明 796951