Large Language Model Synergy for Ensemble Learning in Medical Question Answering: Design and Evaluation Study

预印本 计算机科学 心理学 数据科学 万维网
作者
Han Yang,Mingchen Li,Huixue Zhou,Yongkang Xiao,Qian Fang,Shuang Zhou,Rui Zhang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e70080-e70080 被引量:6
标识
DOI:10.2196/70080
摘要

Abstract Background Large language models (LLMs) have demonstrated remarkable capabilities in natural language processing tasks, including medical question-answering (QA). However, individual LLMs often exhibit varying performance across different medical QA datasets. We benchmarked individual zero-shot LLMs (GPT-4, Llama2-13B, Vicuna-13B, MedLlama-13B, and MedAlpaca-13B) to assess their baseline performance. Within the benchmark, GPT-4 achieves the best 71% on MedMCQA (medical multiple-choice question answering dataset), Vicuna-13B achieves 89.5% on PubMedQA (a dataset for biomedical question answering), and MedAlpaca-13B achieves the best 70% among all, showing the potential for better performance across different tasks and highlighting the need for strategies that can harness their collective strengths. Ensemble learning methods, combining multiple models to improve overall accuracy and reliability, offer a promising approach to address this challenge. Objective To develop and evaluate efficient ensemble learning approaches, we focus on improving performance across 3 medical QA datasets through our proposed two ensemble strategies. Methods Our study uses 3 medical QA datasets: PubMedQA (1000 manually labeled and 11,269 test, with yes, no, or maybe answered for each question), MedQA-USMLE (Medical Question Answering dataset based on the United States Medical Licensing Examination; 12,724 English board-style questions; 1272 test, 5 options), and MedMCQA (182,822 training/4183 test questions, 4-option multiple choice). We introduced the LLM-Synergy framework, consisting of two ensemble methods: (1) a Boosting-based Weighted Majority Vote ensemble, refining decision-making by adaptively weighting each LLM and (2) a Cluster-based Dynamic Model Selection ensemble, dynamically selecting optimal LLMs for each query based on question-context embeddings and clustering. Results Both ensemble methods outperformed individual LLMs across all 3 datasets. Specifically comparing the best individual LLM, the Boosting-based Majority Weighted Vote achieved accuracies of 35.84% on MedMCQA (+3.81%), 96.21% on PubMedQA (+0.64%), and 37.26% (tie) on MedQA-USMLE. The Cluster-based Dynamic Model Selection yields even higher accuracies of 38.01% (+5.98%) for MedMCQA, 96.36% (+1.09%) for PubMedQA, and 38.13% (+0.87%) for MedQA-USMLE. Conclusions The LLM-Synergy framework, using 2 ensemble methods, represents a significant advancement in leveraging LLMs for medical QA tasks. Through effectively combining the strengths of diverse LLMs, this framework provides a flexible and efficient strategy adaptable to current and future challenges in biomedical informatics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助动听的琳采纳,获得10
刚刚
2秒前
等待冰露完成签到 ,获得积分10
3秒前
不会吹口哨完成签到,获得积分10
3秒前
6秒前
7秒前
vdvdvsd发布了新的文献求助10
7秒前
勤恳鸿涛完成签到,获得积分10
9秒前
9秒前
ESLG完成签到 ,获得积分10
9秒前
充电宝应助DrChen采纳,获得10
9秒前
9秒前
9秒前
NexusExplorer应助坦率的语芙采纳,获得10
12秒前
xiaosi发布了新的文献求助10
12秒前
深情安青应助美好斓采纳,获得10
12秒前
清爽胖飞完成签到 ,获得积分10
12秒前
12秒前
aaa完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
夏歌蝉完成签到,获得积分10
15秒前
liulei发布了新的文献求助10
15秒前
外向蜡烛发布了新的文献求助10
15秒前
AlexanderChen发布了新的文献求助10
16秒前
16秒前
钟意完成签到,获得积分20
16秒前
赘婿应助ly浩采纳,获得10
16秒前
爱喝可乐发布了新的文献求助10
17秒前
Lucas应助微微采纳,获得10
17秒前
12发布了新的文献求助50
17秒前
dmyy313235发布了新的文献求助10
17秒前
0717完成签到,获得积分10
20秒前
21秒前
科研通AI2S应助jiangshanshan采纳,获得10
23秒前
外向蜡烛完成签到,获得积分10
24秒前
24秒前
DrChen完成签到,获得积分10
25秒前
袁金粉发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605599
求助须知:如何正确求助?哪些是违规求助? 4690155
关于积分的说明 14862533
捐赠科研通 4702014
什么是DOI,文献DOI怎么找? 2542183
邀请新用户注册赠送积分活动 1507817
关于科研通互助平台的介绍 1472113