Research Review on Quality Detection of Fresh Tea Leaves Based on Spectral Technology

高光谱成像 计算机科学 预处理器 平滑的 质量(理念) 人工智能 近红外光谱 遥感 模式识别(心理学) 生物系统 环境科学 数学 计算机视觉 光学 物理 地理 生物 量子力学
作者
Ting Tang,Qing Luo,Yang Liu,Changlun Gao,Caijin Ling,Weibin Wu
出处
期刊:Foods [MDPI AG]
卷期号:13 (1): 25-25 被引量:27
标识
DOI:10.3390/foods13010025
摘要

As the raw material for tea making, the quality of tea leaves directly affects the quality of finished tea. The quality of fresh tea leaves is mainly assessed by manual judgment or physical and chemical testing of the content of internal components. Physical and chemical methods are more mature, and the test results are more accurate and objective, but traditional chemical methods for measuring the biochemical indexes of tea leaves are time-consuming, labor-costly, complicated, and destructive. With the rapid development of imaging and spectroscopic technology, spectroscopic technology as an emerging technology has been widely used in rapid non-destructive testing of the quality and safety of agricultural products. Due to the existence of spectral information with a low signal-to-noise ratio, high information redundancy, and strong autocorrelation, scholars have conducted a series of studies on spectral data preprocessing. The correlation between spectral data and target data is improved by smoothing noise reduction, correction, extraction of feature bands, and so on, to construct a stable, highly accurate estimation or discrimination model with strong generalization ability. There have been more research papers published on spectroscopic techniques to detect the quality of tea fresh leaves. This study summarizes the principles, analytical methods, and applications of Hyperspectral imaging (HSI) in the nondestructive testing of the quality and safety of fresh tea leaves for the purpose of tracking the latest research advances at home and abroad. At the same time, the principles and applications of other spectroscopic techniques including Near-infrared spectroscopy (NIRS), Mid-infrared spectroscopy (MIRS), Raman spectroscopy (RS), and other spectroscopic techniques for non-destructive testing of quality and safety of fresh tea leaves are also briefly introduced. Finally, in terms of technical obstacles and practical applications, the challenges and development trends of spectral analysis technology in the nondestructive assessment of tea leaf quality are examined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
1秒前
1秒前
2秒前
完美世界应助呼初南采纳,获得10
2秒前
核桃发布了新的文献求助10
2秒前
MQ_sun发布了新的文献求助10
2秒前
1816013153发布了新的文献求助10
2秒前
欢呼宛秋发布了新的文献求助20
3秒前
黄诗婷发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
光亮雨发布了新的文献求助30
4秒前
dreamvssnow发布了新的文献求助10
4秒前
田様应助JacobDu666采纳,获得10
4秒前
李广辉发布了新的文献求助30
4秒前
猫喵喵发布了新的文献求助10
5秒前
朱华彪发布了新的文献求助10
5秒前
116发布了新的文献求助10
5秒前
5秒前
kootron完成签到,获得积分10
5秒前
moumou完成签到,获得积分10
6秒前
LQ发布了新的文献求助10
6秒前
7秒前
7秒前
xiao完成签到,获得积分10
7秒前
雪碧发布了新的文献求助10
8秒前
Hao完成签到,获得积分10
8秒前
华仔应助默默的彩虹采纳,获得10
8秒前
今后应助1816013153采纳,获得30
9秒前
我是老大应助真三采纳,获得10
9秒前
10秒前
终梦应助zzzz采纳,获得10
10秒前
yu发布了新的文献求助10
10秒前
SciGPT应助zhuyuxin采纳,获得10
10秒前
生信好难完成签到,获得积分10
11秒前
皮皮发布了新的文献求助10
13秒前
zhangqi发布了新的文献求助10
13秒前
14秒前
JamesPei应助谢增采纳,获得10
14秒前
sgst完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496064
求助须知:如何正确求助?哪些是违规求助? 4593935
关于积分的说明 14442521
捐赠科研通 4526500
什么是DOI,文献DOI怎么找? 2480132
邀请新用户注册赠送积分活动 1464858
关于科研通互助平台的介绍 1437624