Automated Machine Learning for Predicting Diabetic Retinopathy Progression From Ultra-Widefield Retinal Images

医学 糖尿病性视网膜病变 眼科 视网膜 人工智能 人口 糖尿病 计算机科学 环境卫生 内分泌学
作者
Paolo S. Silva,Dean Zhang,Cris Martin P. Jacoba,Ward Fickweiler,Drew Lewis,Jeremy Leitmeyer,Katie Curran,Recivall P. Salongcay,Duy Doan,Mohamed Ashraf,Jerry D. Cavallerano,Jennifer K. Sun,Tünde Pető,Lloyd Paul Aiello
出处
期刊:JAMA Ophthalmology [American Medical Association]
卷期号:142 (3): 171-171 被引量:27
标识
DOI:10.1001/jamaophthalmol.2023.6318
摘要

Importance Machine learning (ML) algorithms have the potential to identify eyes with early diabetic retinopathy (DR) at increased risk for disease progression. Objective To create and validate automated ML models (autoML) for DR progression from ultra-widefield (UWF) retinal images. Design, Setting and Participants Deidentified UWF images with mild or moderate nonproliferative DR (NPDR) with 3 years of longitudinal follow-up retinal imaging or evidence of progression within 3 years were used to develop automated ML models for predicting DR progression in UWF images. All images were collected from a tertiary diabetes-specific medical center retinal image dataset. Data were collected from July to September 2022. Exposure Automated ML models were generated from baseline on-axis 200° UWF retinal images. Baseline retinal images were labeled for progression based on centralized reading center evaluation of baseline and follow-up images according to the clinical Early Treatment Diabetic Retinopathy Study severity scale. Images for model development were split 8-1-1 for training, optimization, and testing to detect 1 or more steps of DR progression. Validation was performed using a 328-image set from the same patient population not used in model development. Main Outcomes and Measures Area under the precision-recall curve (AUPRC), sensitivity, specificity, and accuracy. Results A total of 1179 deidentified UWF images with mild (380 [32.2%]) or moderate (799 [67.8%]) NPDR were included. DR progression was present in half of the training set (590 of 1179 [50.0%]). The model’s AUPRC was 0.717 for baseline mild NPDR and 0.863 for moderate NPDR. On the validation set for eyes with mild NPDR, sensitivity was 0.72 (95% CI, 0.57-0.83), specificity was 0.63 (95% CI, 0.57-0.69), prevalence was 0.15 (95% CI, 0.12-0.20), and accuracy was 64.3%; for eyes with moderate NPDR, sensitivity was 0.80 (95% CI, 0.70-0.87), specificity was 0.72 (95% CI, 0.66-0.76), prevalence was 0.22 (95% CI, 0.19-0.27), and accuracy was 73.8%. In the validation set, 6 of 8 eyes (75%) with mild NPDR and 35 of 41 eyes (85%) with moderate NPDR progressed 2 steps or more were identified. All 4 eyes with mild NPDR that progressed within 6 months and 1 year were identified, and 8 of 9 (89%) and 17 of 20 (85%) with moderate NPDR that progressed within 6 months and 1 year, respectively, were identified. Conclusions and Relevance This study demonstrates the accuracy and feasibility of automated ML models for identifying DR progression developed using UWF images, especially for prediction of 2-step or greater DR progression within 1 year. Potentially, the use of ML algorithms may refine the risk of disease progression and identify those at highest short-term risk, thus reducing costs and improving vision-related outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
vetXue完成签到,获得积分10
3秒前
ciwei发布了新的文献求助10
3秒前
共享精神应助yang采纳,获得10
3秒前
3秒前
可爱的函函应助wuqi采纳,获得10
3秒前
4秒前
yy发布了新的文献求助30
4秒前
5秒前
6秒前
6秒前
关耳完成签到 ,获得积分10
7秒前
香蕉觅云应助5656采纳,获得10
7秒前
元正发布了新的文献求助10
7秒前
befond发布了新的文献求助10
7秒前
巴豆醇完成签到 ,获得积分10
7秒前
8秒前
lizzy发布了新的文献求助10
8秒前
8秒前
9秒前
海螺姑娘完成签到,获得积分10
10秒前
10秒前
英姑应助风趣的天奇采纳,获得10
10秒前
momo关注了科研通微信公众号
11秒前
ding应助元正采纳,获得10
12秒前
不过尔尔发布了新的文献求助10
12秒前
迷失的悠悠完成签到,获得积分10
12秒前
水蔓菁发布了新的文献求助30
13秒前
蒋复天发布了新的文献求助10
13秒前
sunshine发布了新的文献求助10
14秒前
xxx完成签到,获得积分10
14秒前
kkkkki完成签到,获得积分10
14秒前
gan发布了新的文献求助10
15秒前
从容的念柏完成签到,获得积分10
15秒前
15秒前
Aaron完成签到 ,获得积分10
15秒前
16秒前
江流石不转完成签到 ,获得积分10
16秒前
在水一方应助lizzy采纳,获得10
16秒前
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049