已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic hepatic tumor segmentation in intra-operative ultrasound: a supervised deep-learning approach

医学 分割 放射科 深度学习 超声波 人工智能 医学物理学 计算机科学
作者
Tiziano Natali,Andrey Zhylka,Karin A Olthof,Jan Maerten Smit,T. R. Baetens,Niels F. M. Kok,Koert Kuhlmann,Oleksandra Ivashchenko,Theo J.M. Ruers,Matteo Fusaglia
出处
期刊:Journal of medical imaging [SPIE]
卷期号:11 (02)
标识
DOI:10.1117/1.jmi.11.2.024501
摘要

PurposeTraining and evaluation of the performance of a supervised deep-learning model for the segmentation of hepatic tumors from intraoperative US (iUS) images, with the purpose of improving the accuracy of tumor margin assessment during liver surgeries and the detection of lesions during colorectal surgeries.ApproachIn this retrospective study, a U-Net network was trained with the nnU-Net framework in different configurations for the segmentation of CRLM from iUS. The model was trained on B-mode intraoperative hepatic US images, hand-labeled by an expert clinician. The model was tested on an independent set of similar images. The average age of the study population was 61.9 ± 9.9 years. Ground truth for the test set was provided by a radiologist, and three extra delineation sets were used for the computation of inter-observer variability.ResultsThe presented model achieved a DSC of 0.84 (p=0.0037), which is comparable to the expert human raters scores. The model segmented hypoechoic and mixed lesions more accurately (DSC of 0.89 and 0.88, respectively) than hyper- and isoechoic ones (DSC of 0.70 and 0.60, respectively) only missing isoechoic or >20 mm in diameter (8% of the tumors) lesions. The inclusion of extra margins of probable tumor tissue around the lesions in the training ground truth resulted in lower DSCs of 0.75 (p=0.0022).ConclusionThe model can accurately segment hepatic tumors from iUS images and has the potential to speed up the resection margin definition during surgeries and the detection of lesion in screenings by automating iUS assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梁三柏发布了新的文献求助10
刚刚
你在听什么歌完成签到,获得积分10
1秒前
粒子耶完成签到,获得积分10
2秒前
bkagyin应助ZLN666采纳,获得10
2秒前
小马甲应助黎明森采纳,获得10
2秒前
亚李完成签到 ,获得积分10
3秒前
4秒前
4秒前
搜集达人应助认真的刺猬采纳,获得20
4秒前
思思完成签到,获得积分10
5秒前
5秒前
L1Young发布了新的文献求助30
5秒前
粗犷的眼睛完成签到,获得积分10
6秒前
6秒前
9秒前
9秒前
wulaoshuai发布了新的文献求助10
10秒前
小海发布了新的文献求助10
10秒前
11秒前
LSH970829发布了新的文献求助10
11秒前
黎明森发布了新的文献求助10
14秒前
14秒前
英俊的铭应助elous采纳,获得10
17秒前
pizwijrit发布了新的文献求助10
17秒前
瓶子君152完成签到,获得积分10
19秒前
Criminology34应助二枫忆桑采纳,获得10
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
19秒前
orixero应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得10
20秒前
北上南下的卷面皮关注了科研通微信公众号
20秒前
rui应助科研通管家采纳,获得10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
星辰大海应助科研通管家采纳,获得10
20秒前
任性翩跹应助科研通管家采纳,获得10
20秒前
烟花应助科研通管家采纳,获得10
20秒前
科目三应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5265599
求助须知:如何正确求助?哪些是违规求助? 4425560
关于积分的说明 13776696
捐赠科研通 4301183
什么是DOI,文献DOI怎么找? 2360127
邀请新用户注册赠送积分活动 1356156
关于科研通互助平台的介绍 1317525