Transformer guided progressive fusion network for 3D pancreas and pancreatic mass segmentation

分割 计算机科学 人工智能 变压器 模式识别(心理学) 编码器 卷积神经网络 掷骰子 工程类 数学 电压 几何学 电气工程 操作系统
作者
Taiping Qu,Xiuli Li,Xiheng Wang,Wenyi Deng,Li Mao,Ming He,Xiao Li,Yun Wang,Zaiyi Liu,Long Jiang Zhang,Zhengyu Jin,Huadan Xue,Yizhou Yu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:86: 102801-102801 被引量:18
标识
DOI:10.1016/j.media.2023.102801
摘要

Pancreatic masses are diverse in type, often making their clinical management challenging. This study aims to address the task of various types of pancreatic mass segmentation and detection while accurately segmenting the pancreas. Although convolution operation performs well at extracting local details, it experiences difficulty capturing global representations. To alleviate this limitation, we propose a transformer guided progressive fusion network (TGPFN) that utilizes the global representation captured by the transformer to supplement long-range dependencies lost by convolution operations at different resolutions. TGPFN is built on a branch-integrated network structure, where the convolutional neural network and transformer branches first perform separate feature extraction in the encoder, and then the local and global features are progressively fused in the decoder. To effectively integrate the information of the two branches, we design a transformer guidance flow to ensure feature consistency, and present a cross-network attention module to capture the channel dependencies. Extensive experiments with nnUNet (3D) show that TGPFN improves the mass segmentation (Dice: 73.93% vs. 69.40%) and detection accuracy (detection rate: 91.71% vs. 84.97%) on 416 private CTs, and also obtains performance improvements of mass segmentation (Dice: 43.86% vs. 42.07%) and detection (detection rate: 83.33% vs. 71.74%) on 419 public CTs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搞怪的随阴完成签到,获得积分20
1秒前
NYM完成签到 ,获得积分10
1秒前
莉芳完成签到,获得积分20
1秒前
默默的凡梅完成签到,获得积分10
1秒前
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助小岚乖乖采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得30
3秒前
诸葛御风应助科研通管家采纳,获得50
3秒前
LT发布了新的文献求助10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
冰魂应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
桥豆麻袋应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
暗栀完成签到,获得积分10
4秒前
4秒前
Orange应助Cx330采纳,获得10
5秒前
lzs发布了新的文献求助10
5秒前
rong_w发布了新的文献求助10
5秒前
6秒前
6秒前
乏善可陈发布了新的文献求助10
6秒前
络桵完成签到,获得积分10
7秒前
ZL完成签到 ,获得积分10
7秒前
yoga_jiang发布了新的文献求助10
8秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806325
求助须知:如何正确求助?哪些是违规求助? 3351096
关于积分的说明 10352817
捐赠科研通 3066979
什么是DOI,文献DOI怎么找? 1684207
邀请新用户注册赠送积分活动 809433
科研通“疑难数据库(出版商)”最低求助积分说明 765487