材料科学
薄膜
结晶
溅射
热稳定性
相变存储器
纹理(宇宙学)
相(物质)
溅射沉积
温度系数
活化能
分析化学(期刊)
沉积(地质)
锑
化学工程
冶金
复合材料
纳米技术
化学
物理化学
古生物学
人工智能
色谱法
有机化学
工程类
图像(数学)
计算机科学
生物
图层(电子)
沉积物
作者
Anyi He,Jinyi Zhu,Guoxiang Wang,Andriy Lotnyk,S. Cremer,Yimin Chen,Xiang Shen
摘要
A single Sb phase demonstrates potential for use in phase change memory devices. However, the rapid crystallization of Sb at room temperature imposes limitations on its practical application. To overcome this issue, Sb is alloyed with Se using a reactive co-sputtering deposition technique, employing both Sb and Sb2Se3 sputter targets. This process results in the formation of Sb-rich Se thin films with varying compositions. Compared to pure Sb, the Sb-rich Se thin films exhibit enhanced thermal stability due to the formation of Sb–Se bonds and reduced resistance drift. In particular, the Sb86.6Se13.4 thin film demonstrates an exceptionally low resistance drift coefficient (0.004), a high crystallization temperature (Tc = 195 °C), a high 10-year data retention temperature (116.3 °C), and a large crystallization activation energy (3.29 eV). Microstructural analysis of the Sb86.6Se13.4 reveals the formation of a trigonal Sb phase with (012) texture at 250 °C, while Sb18Se and Sb2Se3 phases form at 300 °C. Conversely, the Sb98.3Se1.7 thin film shows the formation of the single Sb phase with (001) texture, a Tc of 145 °C, and a low resistance drift coefficient (0.011). Overall, this study demonstrates that the alloying strategy is a viable approach for enhancing thermal stability and reducing resistance drift in Sb-based phase-change materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI