Variational temporal convolutional networks for I-FENN thermoelasticity

有限元法 应用数学 边值问题 计算机科学 功能(生物学) 人工神经网络 边界(拓扑) 数学 数学优化 算法 数学分析 人工智能 物理 进化生物学 生物 热力学
作者
Diab W. Abueidda,Mostafa E. Mobasher
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:429: 117122-117122 被引量:1
标识
DOI:10.1016/j.cma.2024.117122
摘要

Machine learning (ML) has been used to solve multiphysics problems like thermoelasticity through multi-layer perceptron (MLP) networks. However, MLPs have high computational costs and need to be trained for each prediction instance. To overcome these limitations, we introduced an integrated finite element neural network (I-FENN) framework to solve transient thermoelasticity problems in Abueidda and Mobasher (2024). This approach used a physics-informed temporal convolutional network (PI-TCN) within a finite element scheme for solving transient thermoelasticity problems. In this paper, we introduce an I-FENN framework using a new variational TCN model trained to minimize the thermoelastic variational form rather than the strong form of the energy balance. We mathematically prove that the I-FENN setup based on minimizing the variational form of transient thermoelasticity still leads to the same solution as the strong form. Introducing the variational form to the ML model brings the advantages of lower requirement for the differentiability of the basis function and, thus, lower memory requirement and higher computational efficiency. Also, it automatically satisfies zero Neumann boundary conditions, thus reducing the complexity of the loss function. The formulation based on the variational form complies with thermodynamic requirements. The proposed loss function reduces the difference between predicted and target data while minimizing the variational form of thermoelasticity equations, combining the benefits of both data-driven and variational methods. In addition, this study uses finite element shape functions for spatial gradient calculations and compares their performance against automatic differentiation. Our results reveal that models leveraging shape functions exhibit higher accuracy in capturing the behavior of the thermoelasticity problem and faster convergence. Adding the variational term and using shape functions for gradient calculations ensure better adherence to the underlying physics. We demonstrate the capabilities of this I-FENN framework through multiple numerical examples. Additionally, we discuss the convergence of the proposed variational TCN model and the impact of hyperparameters on its performance. The proposed approach offers a well-founded and flexible platform for solving fully coupled thermoelasticity problems while retaining computational efficiency, where the efficiency scales proportional to the model size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助科研通管家采纳,获得10
4秒前
cdercder应助科研通管家采纳,获得10
4秒前
cdercder应助科研通管家采纳,获得10
4秒前
古炮完成签到 ,获得积分10
13秒前
跳跃的鹏飞完成签到 ,获得积分10
16秒前
追寻夏烟完成签到 ,获得积分10
24秒前
Docgyj完成签到 ,获得积分0
33秒前
yshj完成签到 ,获得积分10
34秒前
北国雪未消完成签到 ,获得积分10
1分钟前
心静自然好完成签到 ,获得积分10
1分钟前
开拖拉机的医学僧完成签到 ,获得积分10
1分钟前
kd1412完成签到 ,获得积分10
1分钟前
俏皮的松鼠完成签到 ,获得积分10
1分钟前
Sunnpy完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
祁乾完成签到 ,获得积分10
1分钟前
小菡菡发布了新的文献求助50
1分钟前
zty568发布了新的文献求助10
1分钟前
kryptonite完成签到 ,获得积分10
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
lee完成签到 ,获得积分10
2分钟前
ppat5012完成签到 ,获得积分10
2分钟前
zhuosht完成签到 ,获得积分10
2分钟前
badbaby完成签到 ,获得积分10
2分钟前
顺利毕业mpa完成签到,获得积分10
2分钟前
从容的水壶完成签到 ,获得积分10
2分钟前
mzrrong完成签到 ,获得积分10
3分钟前
zty568完成签到,获得积分10
3分钟前
zhilianghui0807完成签到 ,获得积分10
3分钟前
雁塔完成签到 ,获得积分10
3分钟前
wdlc完成签到,获得积分10
3分钟前
笨笨青筠完成签到 ,获得积分10
3分钟前
火山完成签到 ,获得积分10
3分钟前
打打应助无奈的萍采纳,获得10
3分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
4分钟前
cdercder应助科研通管家采纳,获得10
4分钟前
cdercder应助科研通管家采纳,获得10
4分钟前
cdercder应助科研通管家采纳,获得10
4分钟前
wure10完成签到 ,获得积分10
4分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779209
求助须知:如何正确求助?哪些是违规求助? 3324802
关于积分的说明 10219893
捐赠科研通 3039903
什么是DOI,文献DOI怎么找? 1668514
邀请新用户注册赠送积分活动 798702
科研通“疑难数据库(出版商)”最低求助积分说明 758503