图层(电子)
领域(数学)
材料科学
机械工程
机械
工程类
复合材料
物理
数学
纯数学
作者
Shouhong Shan,Huadong Yong,Youhe Zhou
标识
DOI:10.1016/j.physc.2024.1354501
摘要
The degradation of critical current due to mechanical deformation in a high field has a profound impact on the performance of high-temperature superconducting (HTS) structures. The multi-layer conductor on round core (CORC) cable is a widely-applied HTS structure in engineering. Due to the complexity of the multi-layer CORC cable, the contact between the tapes should be considered when simulating the mechanical behavior in high field. In this paper, 3D electromagnetic and mechanical models were developed to investigate the mechanical behavior of the multi-layer CORC cable. Under the same electromagnetic force, the comparisons of mechanical models of a 5-layer CORC cable with different contact methods are presented. Subsequently, the effects of the loading path of the external magnetic field and transport current, the bending geometry of the CORC cable, the winding direction of the HTS tape in the CORC cable, and the shielding current on the mechanical behavior are discussed, respectively. The numerical results are useful for the design and operation of CORC cable in high field.
科研通智能强力驱动
Strongly Powered by AbleSci AI