Development of a deep learning model for predicting recurrence of hepatocellular carcinoma after liver transplantation

肝细胞癌 医学 米兰标准 肝移植 人工智能 多层感知器 内科学 感知器 危险系数 人工神经网络 移植 机器学习 肿瘤科 计算机科学 置信区间
作者
Soo‐Byung Ko,Jie Cao,Yong-kang Yang,Zhifeng Xi,Hyun Wook Han,Meng Sha,Qiang Xia
出处
期刊:Frontiers in Medicine [Frontiers Media]
卷期号:11
标识
DOI:10.3389/fmed.2024.1373005
摘要

Background Liver transplantation (LT) is one of the main curative treatments for hepatocellular carcinoma (HCC). Milan criteria has long been applied to candidate LT patients with HCC. However, the application of Milan criteria failed to precisely predict patients at risk of recurrence. As a result, we aimed to establish and validate a deep learning model comparing with Milan criteria and better guide post-LT treatment. Methods A total of 356 HCC patients who received LT with complete follow-up data were evaluated. The entire cohort was randomly divided into training set ( n = 286) and validation set ( n = 70). Multi-layer-perceptron model provided by pycox library was first used to construct the recurrence prediction model. Then tabular neural network (TabNet) that combines elements of deep learning and tabular data processing techniques was utilized to compare with Milan criteria and verify the performance of the model we proposed. Results Patients with larger tumor size over 7 cm, poorer differentiation of tumor grade and multiple tumor numbers were first classified as high risk of recurrence. We trained a classification model with TabNet and our proposed model performed better than the Milan criteria in terms of accuracy (0.95 vs. 0.86, p < 0.05). In addition, our model showed better performance results with improved AUC, NRI and hazard ratio, proving the robustness of the model. Conclusion A prognostic model had been proposed based on the use of TabNet on various parameters from HCC patients. The model performed well in post-LT recurrence prediction and the identification of high-risk subgroups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫的月亮关注了科研通微信公众号
刚刚
大1完成签到,获得积分10
1秒前
Stella完成签到,获得积分10
2秒前
科研通AI5应助水蜜桃幽灵采纳,获得10
2秒前
2秒前
兴奋的若菱完成签到 ,获得积分10
2秒前
3秒前
星辰大海应助xinyiai采纳,获得10
3秒前
桃宝儿完成签到,获得积分10
3秒前
han完成签到,获得积分10
4秒前
Solarenergy完成签到,获得积分0
4秒前
杨老师发布了新的文献求助10
4秒前
oo发布了新的文献求助10
5秒前
王大力发布了新的文献求助10
5秒前
哔哔发布了新的文献求助10
5秒前
文良颜丑完成签到,获得积分10
6秒前
白起发布了新的文献求助10
6秒前
7秒前
ss_hHe发布了新的文献求助10
7秒前
8秒前
天天快乐应助菲菲采纳,获得10
8秒前
9秒前
9秒前
strings完成签到,获得积分10
9秒前
9秒前
12秒前
早睡早起的安完成签到,获得积分10
12秒前
三岁居居发布了新的文献求助10
12秒前
李繁蕊完成签到,获得积分10
12秒前
左眼天堂发布了新的文献求助10
13秒前
xinyiai完成签到,获得积分10
13秒前
一一发布了新的文献求助10
14秒前
14秒前
14秒前
张张张___发布了新的文献求助10
14秒前
光盘行动发布了新的文献求助10
14秒前
14秒前
lixy发布了新的文献求助10
15秒前
15秒前
天天快乐应助红鸟采纳,获得10
16秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
When trust breaks down: alliance norms and world politics 200
Evaluation of sustainable development level for front-end cold-chain logistics of fruits and vegetables: a case study on Xinjiang, China 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827869
求助须知:如何正确求助?哪些是违规求助? 3370017
关于积分的说明 10460829
捐赠科研通 3089868
什么是DOI,文献DOI怎么找? 1700097
邀请新用户注册赠送积分活动 817674
科研通“疑难数据库(出版商)”最低求助积分说明 770353