清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development of a deep learning model for predicting recurrence of hepatocellular carcinoma after liver transplantation

肝细胞癌 医学 米兰标准 肝移植 人工智能 多层感知器 内科学 感知器 危险系数 人工神经网络 移植 机器学习 肿瘤科 计算机科学 置信区间
作者
Soo‐Byung Ko,Jie Cao,Yong-kang Yang,Zhifeng Xi,Hyun Wook Han,Meng Sha,Qiang Xia
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fmed.2024.1373005
摘要

Background Liver transplantation (LT) is one of the main curative treatments for hepatocellular carcinoma (HCC). Milan criteria has long been applied to candidate LT patients with HCC. However, the application of Milan criteria failed to precisely predict patients at risk of recurrence. As a result, we aimed to establish and validate a deep learning model comparing with Milan criteria and better guide post-LT treatment. Methods A total of 356 HCC patients who received LT with complete follow-up data were evaluated. The entire cohort was randomly divided into training set ( n = 286) and validation set ( n = 70). Multi-layer-perceptron model provided by pycox library was first used to construct the recurrence prediction model. Then tabular neural network (TabNet) that combines elements of deep learning and tabular data processing techniques was utilized to compare with Milan criteria and verify the performance of the model we proposed. Results Patients with larger tumor size over 7 cm, poorer differentiation of tumor grade and multiple tumor numbers were first classified as high risk of recurrence. We trained a classification model with TabNet and our proposed model performed better than the Milan criteria in terms of accuracy (0.95 vs. 0.86, p < 0.05). In addition, our model showed better performance results with improved AUC, NRI and hazard ratio, proving the robustness of the model. Conclusion A prognostic model had been proposed based on the use of TabNet on various parameters from HCC patients. The model performed well in post-LT recurrence prediction and the identification of high-risk subgroups.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Migue发布了新的文献求助30
4秒前
11秒前
简单应助科研通管家采纳,获得10
11秒前
15秒前
29秒前
Migue发布了新的文献求助30
1分钟前
一天完成签到 ,获得积分10
1分钟前
woxinyouyou完成签到,获得积分10
1分钟前
2分钟前
2分钟前
简单应助科研通管家采纳,获得10
2分钟前
56发布了新的文献求助10
2分钟前
ding应助WWW采纳,获得10
2分钟前
两个榴莲完成签到,获得积分0
2分钟前
曲聋五完成签到 ,获得积分0
2分钟前
2分钟前
WWW发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
ding应助甜甜的又柔采纳,获得10
3分钟前
4分钟前
jokerhoney完成签到,获得积分0
4分钟前
jokerhoney完成签到,获得积分0
4分钟前
4分钟前
sonny发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
李爱国应助预付费采纳,获得10
4分钟前
4分钟前
4分钟前
乔凌云发布了新的文献求助10
5分钟前
万能图书馆应助乔凌云采纳,获得10
5分钟前
顾矜应助甜甜的又柔采纳,获得10
5分钟前
预付费完成签到,获得积分10
5分钟前
yang关注了科研通微信公众号
5分钟前
落寞的又菡完成签到,获得积分10
5分钟前
jialin完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Processing of reusable surgical textiles for use in health care facilities 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5802079
求助须知:如何正确求助?哪些是违规求助? 5823154
关于积分的说明 15505849
捐赠科研通 4927955
什么是DOI,文献DOI怎么找? 2652969
邀请新用户注册赠送积分活动 1600019
关于科研通互助平台的介绍 1554862