Meta-learning enhanced classification of complex defects in pressure vessels

作者
wenfeng xia,Jiuyang Yu,Siyu Li,Yaonan Dai,Pan Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (10): 106001-106001
标识
DOI:10.1088/1361-6501/ae09ce
摘要

Abstract Weld defects in pressure vessels, prone to development under long-term operation under complex and harsh environments with alternating loads and corrosion, pose critical safety risks. Current defect classification primarily relies on manual interpretation of sensor images, which is inherently subjective. Therefore, deep learning (DL) has become a common way to classify images. However, insufficient quantity of defect sensor data limiting DL applicability, and the prevalence of small-scale, morphologically diverse defect instances that hinder accurate classification. To address these issues, we propose a two-stage meta-fine-tuning paradigm (TMF) for transfer learning in the classification of welding defects in pressure vessels. This paradigm migrates the weights of the source domain training to the RIAWELC dataset. The first stage employs meta-learning, where a limited representative sample is selected from multiple defect categories, allowing for rapid adaptation to new tasks with minimal supervision. The second phase performs fine-tuning with a small set of labeled target domain data and augments with MixUp to enhance generalization and robustness. Experimental results demonstrate that the TMF algorithm achieves an accuracy of over 92%, outperforming conventional manual inspection and DL approaches. The proposed paradigm demonstrates promising generalizability for defect classification tasks in analogous industrial scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qyp完成签到,获得积分10
刚刚
1秒前
2秒前
3秒前
1233发布了新的文献求助10
3秒前
4秒前
斯文败类应助苹果文博采纳,获得10
4秒前
4秒前
共享精神应助赵梦杰采纳,获得30
6秒前
7秒前
Lignin发布了新的文献求助10
7秒前
科研通AI6.1应助kunpenezy采纳,获得10
9秒前
量子星尘发布了新的文献求助30
9秒前
9秒前
10秒前
Lucas应助吃个馍馍采纳,获得10
11秒前
owldan完成签到,获得积分10
11秒前
英姑应助tgq7777采纳,获得10
12秒前
wxx发布了新的文献求助10
12秒前
潮汐完成签到,获得积分10
13秒前
佳佳应助zzzz采纳,获得20
13秒前
jzt12138发布了新的文献求助10
14秒前
14秒前
科研通AI6.1应助pppy采纳,获得10
15秒前
16秒前
16秒前
Lignin发布了新的文献求助10
16秒前
歪歪完成签到,获得积分10
16秒前
yihuifa完成签到 ,获得积分10
17秒前
一蓑烟雨任完成签到,获得积分10
17秒前
宫戚戚完成签到 ,获得积分10
17秒前
19秒前
CR7发布了新的文献求助10
19秒前
19秒前
20秒前
lalala完成签到,获得积分10
21秒前
amnesiamber完成签到 ,获得积分10
21秒前
wxx完成签到,获得积分10
22秒前
西一阿铭发布了新的文献求助10
23秒前
zhangj完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736800
求助须知:如何正确求助?哪些是违规求助? 5368437
关于积分的说明 15334001
捐赠科研通 4880560
什么是DOI,文献DOI怎么找? 2622896
邀请新用户注册赠送积分活动 1571792
关于科研通互助平台的介绍 1528628