亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring the potential of lightweight large language models for AI-based mental health counselling task: a novel comparative study

心理健康 计算机科学 任务(项目管理) 医学 精神科 经济 管理
作者
Ritesh Maurya,Nikhil Kumar Rajput,M G Diviit,Satyajit Mahapatra,Manish Kumar Ojha
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1) 被引量:2
标识
DOI:10.1038/s41598-025-05012-1
摘要

Abstract In recent years, Transformer-based large language models (LLMs) have significantly improved upon their text generation capability. Mental health is a serious concern that can be addressed using LLM-based automated mental health counselors. These systems can provide empathetic responses to individuals in need while considering the negative beliefs, stigma, and taboos associated with mental health issues. Considering the large size of these LLMs makes it difficult to deploy these automated counselors on low cost/resource devices such as edge devices. Therefore, the motivation of the present study to analyze the effectiveness of lightweight LLMs in the development of automated mental health counseling systems. In this study, lightweight open source LLMs such as Google’s T5 s (small variant), BART B (base variant), FLAN-T5 s (small variant), and Microsoft’s GODEL B (base variant) have been fine-tuned for automated mental health counseling task utilizing a diverse set of datasets publicly available online. The experimental results reveal that BART’s base variant outperformed the other models across all key metrics such as ROUGE-1, ROUGE-2, ROUGE-L, and BLEU with scores of 0.4727, 0.2665, 0.3554, and 25.3993 respectively. In comparison to other models, BART-base model generated empathetic, and emotionally supportive responses. These findings highlight the potential of lightweight LLMs (small size LLMs), in advancing the field of LLM-based mental health counseling solutions and underscore the need for exploration of lightweight LLMs for this mental health counseling use case. The code for this work is available at the following link: https://github.com/diviitmg03/Comparative-analysis-of-LLMs-.git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巫马谷南完成签到,获得积分10
刚刚
10秒前
17秒前
17秒前
21秒前
bobo发布了新的文献求助10
22秒前
所所应助Re采纳,获得10
23秒前
研友_VZG7GZ应助世界需要我采纳,获得10
24秒前
wang完成签到 ,获得积分10
26秒前
古今奇观完成签到 ,获得积分10
28秒前
冬菊完成签到 ,获得积分10
32秒前
天天快乐应助可乐采纳,获得10
33秒前
万能图书馆应助Re采纳,获得10
33秒前
37秒前
38秒前
38秒前
天师府完成签到 ,获得积分10
39秒前
Richard发布了新的文献求助10
41秒前
43秒前
46秒前
47秒前
科研通AI6.1应助小橘采纳,获得10
49秒前
52秒前
nicoco完成签到,获得积分10
54秒前
58秒前
58秒前
FashionBoy应助科研通管家采纳,获得10
59秒前
科研通AI6应助科研通管家采纳,获得10
59秒前
morena应助科研通管家采纳,获得30
59秒前
科研通AI6.1应助bobo采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
bobo完成签到,获得积分10
1分钟前
白术完成签到,获得积分10
1分钟前
TongKY完成签到 ,获得积分10
1分钟前
summer发布了新的文献求助10
1分钟前
1分钟前
浮云发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739102
求助须知:如何正确求助?哪些是违规求助? 5383779
关于积分的说明 15339426
捐赠科研通 4881827
什么是DOI,文献DOI怎么找? 2623950
邀请新用户注册赠送积分活动 1572640
关于科研通互助平台的介绍 1529390