材料科学
铁电性
石墨烯
异质结
堆积
范德瓦尔斯力
纳米尺度
半导体
磁畴壁(磁性)
电场
凝聚态物理
纳米技术
光电子学
磁场
磁化
物理
电介质
核磁共振
量子力学
分子
作者
Zhao Liu,Yunyun Wei,Wengen Ouyang,Junyan Zhang,Feng Luo
摘要
Two-dimensional (2D) homo- and heterojunctions in van der Waals materials exhibit remarkable electrical, mechanical, and optical properties, making them promising for diverse applications. In trilayer graphene, ABA (Bernal) and ABC (rhombohedral) stacking domains naturally form homojunctions at lateral boundaries, enabling in-plane semi-metal/semiconductor p-n junctions under a perpendicular electric field. The domain-wall (DW) soliton, characterized by strained carbon rings, plays a key role in these junctions. Here, we present a low-energy approach to dynamically manipulate DW solitons by integrating electrically tunable ABC/ABA homojunctions combining nanoscale shear strain with low-voltage fields by an atomic force microscope (AFM) tip. By leveraging ferroelectric sliding, this method enables precise control over stacking configurations, allowing flexible repositioning of DW solitons. Our work provides a scalable and efficient strategy for tailoring 1D p-n junctions, opening new avenues for nanoscale physical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI