Physics-Informed Neural Networks for Semiconductor Film Deposition: A Review

作者
Tao Han,Zahra Taheri,Hyunwoong Ko
标识
DOI:10.1115/detc2025-169732
摘要

Abstract Semiconductor manufacturing relies heavily on specialized film deposition processes, such as Chemical Vapor Deposition and Physical Vapor Deposition. These complex processes require precise control over critical parameters—including temperature, pressure, and material flow rates—to achieve film uniformity, proper adhesion, and desired functionality. Recent advancements in Physics-Informed Neural Networks (PINNs), an innovative machine learning (ML) approach, have shown significant promise in addressing challenges related to process control, quality assurance, and predictive modeling within semiconductor film deposition and other manufacturing domains. This paper provides a comprehensive review of ML applications specifically targeted at semiconductor film deposition processes. Through a thematic analysis, we identify key trends, existing limitations, and research gaps, offering insights into both the advantages and constraints of current methodologies. Reviewed studies are categorized into four key areas: (1) Process Control and Optimization; (2) Defect Image Recognition and Classification; (3) Tool Preventative Maintenance Prediction and Hardware Anomaly Detection; and (4) Atomic Layer Deposition Precursor Finding. Our structured analysis aims to highlight the potential integration of these ML techniques to enhance interpretability, accuracy, and robustness in film deposition processes. Additionally, we examine state-of-the-art PINN methods, discussing strategies for embedding physical knowledge, governing laws, and partial differential equations into advanced neural network architectures tailored for semiconductor manufacturing. Based on this detailed review, we propose novel research directions that integrate the strengths of PINNs to significantly advance film deposition processes. The contributions of this study include establishing a clear pathway for future research in integrating physics-informed ML frameworks, addressing existing methodological gaps, and ultimately improving precision, scalability, and operational efficiency within semiconductor manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助繁荣的念双采纳,获得10
刚刚
仔仔仔平发布了新的文献求助10
1秒前
沉静的弼发布了新的文献求助10
1秒前
微微完成签到,获得积分10
1秒前
mm完成签到,获得积分10
1秒前
guozizi完成签到,获得积分10
2秒前
柏忆南完成签到 ,获得积分10
2秒前
2秒前
3秒前
wfy1227完成签到,获得积分10
3秒前
3秒前
who发布了新的文献求助10
4秒前
4秒前
4秒前
我爱睡大觉完成签到,获得积分10
6秒前
多科特张完成签到,获得积分10
6秒前
JH应助wangli采纳,获得10
6秒前
AA18236931952发布了新的文献求助10
7秒前
李健的小迷弟应助wfy1227采纳,获得10
8秒前
Wsyyy发布了新的文献求助10
8秒前
8秒前
科研通AI6应助欣喜安蕾采纳,获得10
8秒前
猪猪hero发布了新的文献求助10
8秒前
光风霁月发布了新的文献求助30
9秒前
justin完成签到,获得积分10
9秒前
22222发布了新的文献求助10
9秒前
10秒前
12秒前
乐观的水儿完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
15秒前
传奇3应助lola采纳,获得10
17秒前
粗心的谷槐完成签到 ,获得积分10
18秒前
yang发布了新的文献求助10
18秒前
hdhuang完成签到,获得积分10
19秒前
小二郎应助liugm采纳,获得10
20秒前
21秒前
奶桃七七发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537102
求助须知:如何正确求助?哪些是违规求助? 4624693
关于积分的说明 14592890
捐赠科研通 4565218
什么是DOI,文献DOI怎么找? 2502220
邀请新用户注册赠送积分活动 1480944
关于科研通互助平台的介绍 1452123