生物
6号乘客
胚胎干细胞
表观遗传学
甲基转移酶
基因表达调控
细胞生物学
细胞分化
组蛋白
基因
干细胞
神经干细胞
遗传学
转录因子
甲基化
作者
Yanxin Xu,Jiajie Xi,Guiying Wang,Zhenming Guo,Qiaoyi Sun,Chenqi Lu,Li Ma,Yukang Wu,Wenwen Jia,Songcheng Zhu,Xudong Guo,Shan Bian,Jiuhong Kang
摘要
Long noncoding RNAs (lncRNAs) play a wide range of roles in the epigenetic regulation of crucial biological processes, but the functions of lncRNAs in cortical development are poorly understood. Using human embryonic stem cell (hESC)-based 2D neural differentiation approach and 3D cerebral organoid system, we identified that the lncRNA PAUPAR, which is adjacent to PAX6, plays essential roles in cortical differentiation by interacting with PAX6 to regulate the expression of a large number of neural genes. Mechanistic studies showed that PAUPAR confers PAX6 proper binding sites on the target neural genes by directly binding the genomic regions of these genes. Moreover, PAX6 recruits the histone methyltransferase NSD1 through its C-terminal PST enrichment domain, then regulate H3K36 methylation and the expression of target genes. Collectively, our data reveal that the PAUPAR/PAX6/NSD1 complex plays a critical role in the epigenetic regulation of hESC cortical differentiation and highlight the importance of PAUPAR as an intrinsic regulator of cortical differentiation.
科研通智能强力驱动
Strongly Powered by AbleSci AI