Deep spatio-temporal graph convolutional network for traffic accident prediction

计算机科学 图形 深度学习 数据挖掘 组分(热力学) 空间分析 嵌入 人工智能 理论计算机科学 遥感 地理 热力学 物理
作者
Le Yu,Bowen Du,Xiao Hu,Leilei Sun,Liangzhe Han,Weifeng Lv
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:423: 135-147 被引量:178
标识
DOI:10.1016/j.neucom.2020.09.043
摘要

Traffic accidents usually lead to severe human casualties and huge economic losses in real-world scenarios. Timely accurate prediction of traffic accidents has great potential to protect public safety and reduce economic losses. However, it is challenging to predict traffic accidents due to the complex causality of traffic accidents with multiple factors, including spatial correlations, temporal dynamic interactions and external influences in traffic-relevant heterogeneous data. To overcome the above issues, this paper proposes a novel Deep Spatio-Temporal Graph Convolutional Network, namely DSTGCN, to predict traffic accidents. The proposed model is composed of three components: the first component is the spatial learning layer which performs graph convolutional operations on spatial information to learn the correlations in space. The second component is the spatio-temporal learning layer which utilizes graph and standard convolutions to capture the dynamic variations in both spatial and temporal perspective. The third component is the embedding layer which aims to obtain meaningful and semantic representations of external information. To evaluate the proposed model, we collect large-scale real-world data, including accident records, citi-wide vehicle speeds, road networks, meteorological conditions, and Point-of-Interest distributions. Experimental results on real-world datasets demonstrate that DSTGCN outperforms both classical and state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ACCEPT完成签到,获得积分10
刚刚
1秒前
2秒前
终抵星空完成签到,获得积分10
2秒前
华仔应助辛悦超采纳,获得10
3秒前
Lucas应助MMM采纳,获得10
4秒前
5秒前
7秒前
完美世界应助惜曦采纳,获得10
7秒前
111发布了新的文献求助10
8秒前
西红柿草莓番茄完成签到 ,获得积分10
9秒前
9秒前
11秒前
万松辉完成签到,获得积分10
12秒前
姚驰发布了新的文献求助10
12秒前
爆米花应助111采纳,获得10
12秒前
13秒前
雪雪雪完成签到,获得积分10
13秒前
Hua发布了新的文献求助10
14秒前
万能图书馆应助zzzy采纳,获得10
14秒前
天天快乐应助111采纳,获得10
17秒前
17秒前
浮游应助彩色橘子采纳,获得10
18秒前
19秒前
20秒前
万能图书馆应助柳月萍采纳,获得10
20秒前
ywjkeyantong完成签到,获得积分10
21秒前
天天快乐应助zhq采纳,获得10
21秒前
jiaming发布了新的文献求助10
22秒前
MMM完成签到,获得积分10
22秒前
111发布了新的文献求助10
22秒前
顾矜应助十八采纳,获得10
23秒前
NexusExplorer应助十八采纳,获得10
23秒前
23秒前
JZ133发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
25秒前
阡陌发布了新的文献求助10
26秒前
詹广旭完成签到,获得积分10
26秒前
26秒前
SciGPT应助王耀武采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061503
求助须知:如何正确求助?哪些是违规求助? 4285518
关于积分的说明 13354798
捐赠科研通 4103375
什么是DOI,文献DOI怎么找? 2246637
邀请新用户注册赠送积分活动 1252319
关于科研通互助平台的介绍 1183218