Multi-Constraint Latent Representation Learning for Prognosis Analysis Using Multi-Modal Data

计算机科学 过度拟合 人工智能 特征选择 机器学习 特征学习 特征(语言学) 排名(信息检索) 约束(计算机辅助设计) 模式识别(心理学) 数据挖掘 判别式 数学 人工神经网络 几何学 哲学 语言学
作者
Zhenyuan Ning,Zehui Lin,Qing Xiao,Denghui Du,Qianjin Feng,Wufan Chen,Yu Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 3737-3750 被引量:14
标识
DOI:10.1109/tnnls.2021.3112194
摘要

The Cox proportional hazard model has been widely applied to cancer prognosis prediction. Nowadays, multi-modal data, such as histopathological images and gene data, have advanced this field by providing histologic phenotype and genotype information. However, how to efficiently fuse and select the complementary information of high-dimensional multi-modal data remains challenging for Cox model, as it generally does not equip with feature fusion/selection mechanism. Many previous studies typically perform feature fusion/selection in the original feature space before Cox modeling. Alternatively, learning a latent shared feature space that is tailored for Cox model and simultaneously keeps sparsity is desirable. In addition, existing Cox-based models commonly pay little attention to the actual length of the observed time that may help to boost the model's performance. In this article, we propose a novel Cox-driven multi-constraint latent representation learning framework for prognosis analysis with multi-modal data. Specifically, for efficient feature fusion, a multi-modal latent space is learned via a bi-mapping approach under ranking and regression constraints. The ranking constraint utilizes the log-partial likelihood of Cox model to induce learning discriminative representations in a task-oriented manner. Meanwhile, the representations also benefit from regression constraint, which imposes the supervision of specific survival time on representation learning. To improve generalization and alleviate overfitting, we further introduce similarity and sparsity constraints to encourage extra consistency and sparseness. Extensive experiments on three datasets acquired from The Cancer Genome Atlas (TCGA) demonstrate that the proposed method is superior to state-of-the-art Cox-based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weslie发布了新的文献求助10
刚刚
hehe发布了新的文献求助10
刚刚
2秒前
2秒前
2秒前
2秒前
如意以晴发布了新的文献求助10
3秒前
3秒前
GOD伟完成签到,获得积分10
3秒前
Assure发布了新的文献求助10
4秒前
还可以的发布了新的文献求助10
4秒前
温暖琦发布了新的文献求助10
4秒前
4秒前
阳光山槐发布了新的文献求助30
5秒前
科目三应助缓慢思枫采纳,获得10
6秒前
6秒前
英俊的铭应助66采纳,获得10
7秒前
猪猪发布了新的文献求助10
7秒前
marketing完成签到,获得积分10
7秒前
hehe完成签到,获得积分10
8秒前
8秒前
呆萌凤完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
青争发布了新的文献求助10
10秒前
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
zzjjxx应助自觉问梅采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
冰魂应助科研通管家采纳,获得20
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
whs应助科研通管家采纳,获得20
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New digital musical instruments : control and interaction beyond the keyboard 200
English language teaching materials : theory and practice 200
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835595
求助须知:如何正确求助?哪些是违规求助? 3377959
关于积分的说明 10501323
捐赠科研通 3097529
什么是DOI,文献DOI怎么找? 1705876
邀请新用户注册赠送积分活动 820756
科研通“疑难数据库(出版商)”最低求助积分说明 772226