Segmentation and density statistics of mariculture cages from remote sensing images using mask R-CNN

分割 图像拼接 稳健性(进化) 计算机科学 像素 人工智能 图像分割 遥感 计算机视觉 模式识别(心理学) 地理 生物化学 基因 化学
作者
Chuang Yu,Zhuhua Hu,Ruoqing Li,Xin Xia,Yaochi Zhao,Xiang Fan,Yong Bai
出处
期刊:Information Processing in Agriculture [Elsevier BV]
卷期号:9 (3): 417-430 被引量:20
标识
DOI:10.1016/j.inpa.2021.04.013
摘要

The normal growth of fishes is closely relevant to the density of mariculture. It is of great significance to accurately calculate the breeding area of specific sea area from satellite remote sensing images. However, there are no reports about cage segmentation and density detection based on remote sensing images so far. And the accurate segmentation of cages faces challenges from very large high-resolution images. Firstly, a new public mariculture cage data set is built. Secondly, the training set is augmented via sample variations to improve the robustness of the model. Then, for cage segmentation and density statistics, a new methodology based on Mask R-CNN is proposed. Using dividing and stitching technologies, the entire remote sensing test images of the cage can be accurately segmented. Finally, using the trained model, the object detection features and segmentation characteristics can be obtained at the same time. Considering only the area within the target detection frame, the proposed method can count the pixels in the segmented area, which can obtain accurate area and density while reducing time-consuming. Experimental results demonstrate that, compared with traditional contour extraction method and U-Net based scheme, the proposed scheme can significantly improve segmentation precision and model's robustness. The relative error of the actual area is only 1.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助a涵采纳,获得30
刚刚
灬tong完成签到 ,获得积分10
5秒前
5秒前
虚幻黑米完成签到,获得积分10
9秒前
宛宛发布了新的文献求助10
10秒前
海棠朵朵完成签到 ,获得积分10
15秒前
18秒前
无花果应助shihangZhang采纳,获得10
19秒前
思源应助windsky采纳,获得10
21秒前
iNk应助泥嚎采纳,获得10
22秒前
科目三应助陈爱佳采纳,获得10
23秒前
23秒前
27秒前
28秒前
lalaland发布了新的文献求助10
28秒前
香蕉觅云应助我是小可爱采纳,获得10
30秒前
斯文败类应助视野胤采纳,获得10
30秒前
宛宛完成签到,获得积分10
32秒前
33秒前
33秒前
传奇3应助轻松青亦采纳,获得10
35秒前
Annie完成签到,获得积分10
36秒前
安静的棉花糖完成签到 ,获得积分10
37秒前
我是小可爱完成签到,获得积分20
38秒前
38秒前
NexusExplorer应助青雉采纳,获得10
38秒前
聪慧的远山完成签到,获得积分10
39秒前
呼呼呼呼发布了新的文献求助10
42秒前
42秒前
42秒前
tengyi完成签到 ,获得积分10
42秒前
狂野乌冬面完成签到 ,获得积分10
43秒前
44秒前
桐桐应助关山五十州采纳,获得10
44秒前
lalaland发布了新的文献求助10
44秒前
视野胤发布了新的文献求助10
46秒前
loosewires完成签到,获得积分10
47秒前
呼呼呼呼完成签到,获得积分10
47秒前
JamesPei应助张萌采纳,获得10
49秒前
搜集达人应助积极的凌波采纳,获得10
49秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843823
求助须知:如何正确求助?哪些是违规求助? 3386203
关于积分的说明 10544094
捐赠科研通 3106943
什么是DOI,文献DOI怎么找? 1711344
邀请新用户注册赠送积分活动 824042
科研通“疑难数据库(出版商)”最低求助积分说明 774409