降维
反向
计算复杂性理论
维数之咒
还原(数学)
光子晶体
光子学
计算机科学
纳米结构
人工神经网络
反问题
电介质
材料科学
算法
光学
人工智能
数学
纳米技术
光电子学
物理
数学分析
几何学
作者
Mohammadreza Zandehshahvar,Yashar Kiarashi,Michael Chen,Reid Barton,Ali Adibi
出处
期刊:Optics Letters
[Optica Publishing Group]
日期:2021-05-04
卷期号:46 (11): 2634-2634
被引量:19
摘要
In this Letter, we present a deep-learning-based method using neural networks (NNs) for inverse design of photonic nanostructures. We show that by using dimensionality reduction in both the design and the response spaces, the computational complexity of the inverse design algorithm is considerably reduced. As a proof of concept, we apply this method to design multi-layer thin-film structures composed of consecutive layers of two different dielectrics and compare the results using our techniques to those using conventional NNs.
科研通智能强力驱动
Strongly Powered by AbleSci AI