Self-supervised Correction Learning for Semi-supervised Biomedical Image Segmentation

修补 计算机科学 人工智能 分割 模式识别(心理学) 编码器 特征(语言学) 尺度空间分割 图像分割 基于分割的对象分类 深度学习 监督学习 图像(数学) 计算机视觉 人工神经网络 操作系统 哲学 语言学
作者
Ruifei Zhang,Sishuo Liu,Yizhou Yu,Guanbin Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 134-144 被引量:22
标识
DOI:10.1007/978-3-030-87196-3_13
摘要

Biomedical image segmentation plays a significant role in computer-aided diagnosis. However, existing CNN based methods rely heavily on massive manual annotations, which are very expensive and require huge human resources. In this work, we adopt a coarse-to-fine strategy and propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation. Specifically, we design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting, respectively. In the first phase, only the segmentation branch is used to obtain a relatively rough segmentation result. In the second step, we mask the detected lesion regions on the original image based on the initial segmentation map, and send it together with the original image into the network again to simultaneously perform inpainting and segmentation separately. For labeled data, this process is supervised by the segmentation annotations, and for unlabeled data, it is guided by the inpainting loss of masked lesion regions. Since the two tasks rely on similar feature information, the unlabeled data effectively enhances the representation of the network to the lesion regions and further improves the segmentation performance. Moreover, a gated feature fusion (GFF) module is designed to incorporate the complementary features from the two tasks. Experiments on three medical image segmentation datasets for different tasks including polyp, skin lesion and fundus optic disc segmentation well demonstrate the outstanding performance of our method compared with other semi-supervised approaches. The code is available at https://github.com/ReaFly/SemiMedSeg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lylyspeechless完成签到,获得积分10
刚刚
无事小神仙完成签到 ,获得积分10
刚刚
yuyuyu发布了新的文献求助10
1秒前
三石盟约完成签到,获得积分0
1秒前
兴奋鼠标完成签到 ,获得积分10
1秒前
牛马他爹完成签到,获得积分20
1秒前
栩漾完成签到,获得积分10
2秒前
JY'完成签到,获得积分10
2秒前
3秒前
37发布了新的文献求助10
3秒前
健壮诗桃完成签到,获得积分10
3秒前
Hezzzz完成签到,获得积分10
3秒前
3秒前
Dominic7888完成签到,获得积分10
3秒前
伞下铭完成签到 ,获得积分10
3秒前
辞旧完成签到,获得积分10
4秒前
科研棉花糖完成签到,获得积分20
5秒前
现代的秋完成签到,获得积分10
5秒前
研友_Ze2vV8完成签到,获得积分10
5秒前
Netsky完成签到,获得积分10
5秒前
拼搏一曲完成签到,获得积分10
5秒前
ananan完成签到 ,获得积分10
6秒前
所所应助聪慧山水采纳,获得10
6秒前
lilin发布了新的文献求助10
7秒前
搜集达人应助冷艳莛采纳,获得10
7秒前
7秒前
内向汽车完成签到,获得积分10
7秒前
zmy完成签到,获得积分10
7秒前
搜集达人应助司马惜儿采纳,获得10
8秒前
谦让可冥完成签到,获得积分10
8秒前
8秒前
小马完成签到,获得积分10
9秒前
研友_Ze2vV8发布了新的文献求助10
9秒前
羞涩的文轩完成签到,获得积分10
9秒前
zhy完成签到,获得积分10
9秒前
卷心菜完成签到 ,获得积分10
9秒前
9秒前
10秒前
张nmky完成签到,获得积分10
10秒前
儒雅儒雅完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067327
求助须知:如何正确求助?哪些是违规求助? 4289104
关于积分的说明 13362097
捐赠科研通 4108613
什么是DOI,文献DOI怎么找? 2249798
邀请新用户注册赠送积分活动 1255239
关于科研通互助平台的介绍 1187762