Comparative Analysis of Machine Learning Algorithms on Surface Enhanced Raman Spectra of Clinical Staphylococcus Species

人工智能 拉曼光谱 聚类分析 机器学习 表面增强拉曼光谱 无监督学习 数据库扫描 计算机科学 拉曼散射 模式识别(心理学) 生物系统 算法 材料科学 物理 光学 生物 相关聚类 树冠聚类算法
作者
Jia-Wei Tang,Qinghua Liu,Xiao-Cong Yin,Ya-Cheng Pan,Pengbo Wen,Xin Liu,Xingxing Kang,Bing Gu,Zuobin Zhu,Liang Wang
出处
期刊:Frontiers in Microbiology [Frontiers Media]
卷期号:12 被引量:64
标识
DOI:10.3389/fmicb.2021.696921
摘要

Raman spectroscopy (RS) is a widely used analytical technique based on the detection of molecular vibrations in a defined system, which generates Raman spectra that contain unique and highly resolved fingerprints of the system. However, the low intensity of normal Raman scattering effect greatly hinders its application. Recently, the newly emerged surface enhanced Raman spectroscopy (SERS) technique overcomes the problem by mixing metal nanoparticles such as gold and silver with samples, which greatly enhances signal intensity of Raman effects by orders of magnitudes when compared with regular RS. In clinical and research laboratories, SERS provides a great potential for fast, sensitive, label-free, and non-destructive microbial detection and identification with the assistance of appropriate machine learning (ML) algorithms. However, choosing an appropriate algorithm for a specific group of bacterial species remains challenging, because with the large volumes of data generated during SERS analysis not all algorithms could achieve a relatively high accuracy. In this study, we compared three unsupervised machine learning methods and 10 supervised machine learning methods, respectively, on 2,752 SERS spectra from 117 Staphylococcus strains belonging to nine clinically important Staphylococcus species in order to test the capacity of different machine learning methods for bacterial rapid differentiation and accurate prediction. According to the results, density-based spatial clustering of applications with noise (DBSCAN) showed the best clustering capacity (Rand index 0.9733) while convolutional neural network (CNN) topped all other supervised machine learning methods as the best model for predicting Staphylococcus species via SERS spectra (ACC 98.21%, AUC 99.93%). Taken together, this study shows that machine learning methods are capable of distinguishing closely related Staphylococcus species and therefore have great application potentials for bacterial pathogen diagnosis in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
许甜甜鸭应助归海若采纳,获得10
1秒前
英俊的铭应助sdl采纳,获得10
1秒前
在水一方应助顺心靖雁采纳,获得10
2秒前
bs发布了新的文献求助10
2秒前
汉堡包应助joe55667788采纳,获得10
2秒前
科研通AI5应助苏苏苏采纳,获得10
2秒前
3秒前
心灵美凝竹完成签到 ,获得积分10
4秒前
4秒前
七包辣条发布了新的文献求助10
6秒前
hhhm完成签到,获得积分10
6秒前
7秒前
7秒前
烤鸭本鸭发布了新的文献求助10
8秒前
22小研究员应助M22采纳,获得20
8秒前
Asteria发布了新的文献求助10
8秒前
guantlv完成签到,获得积分10
8秒前
9秒前
10秒前
11秒前
Ooo驳回了Yahyah应助
11秒前
YH完成签到,获得积分10
11秒前
ttt发布了新的文献求助10
11秒前
达不溜完成签到 ,获得积分20
11秒前
Akim应助liuziop采纳,获得10
12秒前
小董顺利毕业完成签到,获得积分10
12秒前
张大星发布了新的文献求助10
12秒前
超级无敌喜欢王俊凯完成签到 ,获得积分10
13秒前
xiaowang发布了新的文献求助10
14秒前
sdl发布了新的文献求助10
14秒前
15秒前
无花果应助刘璇1采纳,获得10
15秒前
16秒前
Arthur Zhu发布了新的文献求助10
16秒前
爆米花应助Asteria采纳,获得10
16秒前
米里迷路发布了新的文献求助10
19秒前
小辛发布了新的文献求助10
20秒前
香蕉觅云应助秋風采纳,获得10
20秒前
立军发布了新的文献求助30
21秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829090
求助须知:如何正确求助?哪些是违规求助? 3371770
关于积分的说明 10469066
捐赠科研通 3091450
什么是DOI,文献DOI怎么找? 1701121
邀请新用户注册赠送积分活动 818142
科研通“疑难数据库(出版商)”最低求助积分说明 770724