Multisensor Remote Sensing Imagery Super-Resolution with Conditional GAN

计算机科学 人工智能 卷积神经网络 水准点(测量) 模式识别(心理学) 算法 遥感 大地测量学 地质学 地理
作者
Junwei Wang,Kun Gao,Zhenzhou Zhang,Chong Ni,Zibo Hu,Dayu Chen,Qiong Wu
出处
期刊:Journal of remote sensing [American Association for the Advancement of Science]
卷期号:2021 被引量:21
标识
DOI:10.34133/2021/9829706
摘要

Despite the promising performance on benchmark datasets that deep convolutional neural networks have exhibited in single image super-resolution (SISR), there are two underlying limitations to existing methods. First, current supervised learning-based SISR methods for remote sensing satellite imagery do not use paired real sensor data, instead operating on simulated high-resolution (HR) and low-resolution (LR) image-pairs (typically HR images with their bicubic-degraded LR counterparts), which often yield poor performance on real-world LR images. Second, SISR is an ill-posed problem, and the super-resolved image from discriminatively trained networks with l p norm loss is an average of the infinite possible HR images, thus, always has low perceptual quality. Though this issue can be mitigated by generative adversarial network (GAN), it is still hard to search in the whole solution-space and find the best solution. In this paper, we focus on real-world application and introduce a new multisensor dataset for real-world remote sensing satellite imagery super-resolution. In addition, we propose a novel conditional GAN scheme for SISR task which can further reduce the solution-space. Therefore, the super-resolved images have not only high fidelity, but high perceptual quality as well. Extensive experiments demonstrate that networks trained on the introduced dataset can obtain better performances than those trained on simulated data. Additionally, the proposed conditional GAN scheme can achieve better perceptual quality while obtaining comparable fidelity over the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助沉默诗柳采纳,获得10
刚刚
刚刚
刚刚
时尚的无颜完成签到,获得积分10
1秒前
酷波er应助deception采纳,获得10
2秒前
欣喜无施发布了新的文献求助10
3秒前
3秒前
dinglingling完成签到 ,获得积分10
3秒前
乐观秋天完成签到,获得积分20
4秒前
4秒前
无奈发布了新的文献求助10
5秒前
脂肪小米粥应助雪山飞龙采纳,获得10
7秒前
7秒前
8秒前
niha关注了科研通微信公众号
12秒前
沧浪完成签到,获得积分10
12秒前
12秒前
欧璐关注了科研通微信公众号
13秒前
Akim应助LOAD1N采纳,获得10
13秒前
15秒前
Alherthe发布了新的文献求助10
15秒前
yosh1222发布了新的文献求助10
19秒前
20秒前
dinglingling完成签到 ,获得积分10
20秒前
小雨快跑完成签到,获得积分10
21秒前
23秒前
kbcbwb2002完成签到,获得积分10
26秒前
zhaozhao发布了新的文献求助10
26秒前
善学以致用应助123采纳,获得10
28秒前
林孟倾完成签到 ,获得积分10
29秒前
包容新蕾发布了新的文献求助10
29秒前
sihaibo发布了新的文献求助10
30秒前
Alherthe完成签到,获得积分10
30秒前
dovedd发布了新的文献求助10
30秒前
欧璐发布了新的文献求助10
34秒前
sihaibo完成签到,获得积分10
38秒前
lanmi完成签到,获得积分10
38秒前
39秒前
41秒前
削皮柚子发布了新的文献求助10
43秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4181753
求助须知:如何正确求助?哪些是违规求助? 3717840
关于积分的说明 11719487
捐赠科研通 3397720
什么是DOI,文献DOI怎么找? 1864230
邀请新用户注册赠送积分活动 922154
科研通“疑难数据库(出版商)”最低求助积分说明 833835